85,094 research outputs found

    CFD Applications in Energy Engineering Research and Simulation: An Introduction to Published Reviews

    Get PDF
    Computational Fluid Dynamics (CFD) has been firmly established as a fundamental discipline to advancing research on energy engineering. The major progresses achieved during the last two decades both on software modelling capabilities and hardware computing power have resulted in considerable and widespread CFD interest among scientist and engineers. Numerical modelling and simulation developments are increasingly contributing to the current state of the art in many energy engineering aspects, such as power generation, combustion, wind energy, concentrated solar power, hydro power, gas and steam turbines, fuel cells, and many others. This review intends to provide an overview of the CFD applications in energy and thermal engineering, as a presentation and background for the Special Issue “CFD Applications in Energy Engineering Research and Simulation” published by Processes in 2020. A brief introduction to the most significant reviews that have been published on the particular topics is provided. The objective is to provide an overview of the CFD applications in energy and thermal engineering, highlighting the review papers published on the different topics, so that readers can refer to the different review papers for a thorough revision of the state of the art and contributions into the particular field of interest

    Numerical and experimental design study of a regenerative pump

    Get PDF
    This paper presents the use of a commercial CFD code to simulate the flow-field within the regenerative pump and compare the CFD results with new experimental data. Regenerative pumps are the subject of increased interest in industry as these pumps are low cost, low specific speed, compact and able to deliver high heads with stable performance characteristics. The complex flow-field within the regenerative pump represents a considerable challenge to detailed mathematical modelling. This paper also presents a novel rapid manufacturing process used to consider the effect of impeller geometry changes on the pump efficiency. Ten modified impeller blade profiles, relative to a standard radial configuration, were evaluated. The CFD performance results demonstrate reasonable agreement with the experimental tests. The CFD results also demonstrate that it is possible to represent the helical flow field for the pump which has been witnessed only in experimental flow visualisation until now. The ability to use CFD modelling in conjunction with rapid manufacturing techniques has meant that more complex impeller geometry configurations can now be assessed with better understanding of the flow-field and resulting efficiency

    Evaluation of baffles for optimisation of waste stabilisation ponds : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Environmental Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    Waste stabilisation ponds are a common form of treating wastewater throughout the world and they provide a reliable, low-cost, low-maintenance treatment system. A literature review undertaken highlighted the need for improved understanding of the hydraulics of such systems, and their upgrade. In particular, the application of baffles is not well understood beyond the use of longer, traditional baffles to increase the approximation to plug flow. The mechanisms and interactions behind baffles are not generally understood. The work involved the use of CFD modelling to assess various pond designs. In addition to this, traditional tracer studies were carried out on a physical laboratory model, and on a full-scale field pond. These traditional studies highlighted the success of the computer modelling approach. CFD modelling was used to model twenty pond designs, utilising various baffle lengths, number and position. These cases also studied inlet type and outlet position. In the second phase of the work, six of the CFD designs were tested in the laboratory setting. The final phase of work involved two tracer studies carried out on a field pond, utilising a modified inlet, then a combination of a modified inlet and the inclusion of a short (stub) baffle. CFD modelling has shown to be an effective investigative and design tool. The addition of results from laboratory and field studies further emphasises the benefits of the CFD modelling. The work has also provided an understanding of key flow mechanisms and interactions that have previously been attributed to other factors. Single baffles are not generally effective, and a minimum of two baffles will generally be required to achieve significant treatment improvements. The potential of short (stub) baffles has been shown, however they are sensitive to design changes and should be further researched. Previous research has looked at the pond using a 'black-box' approach, this work seeks to open and explain the flow patterns within that 'black-box'

    Computational and Experimental Study on the effect of flow field distortion on the accuracy of the measurements made by anemometers on the Fino3 Meteorological mast

    Get PDF
    This paper reports on the experimental and computational modelling of the flow field around the FINO3 mast and provides an estimate of the amount of distortion that might be expected on instrumentation mounted on such a large structure. The open source C++ toolbox OpenFOAM was used for the CFD analysis. In order to validate the CFD model, experimental work was carried out in an open section wind tunnel using hot wire anemometry to measure the velocity profile around a sub-scale model of part of the FINO3 mast. The experimental data are in good agreement with the data from the CFD simulatio

    Study of a regenerative pump using numerical and experimental techniques

    Get PDF
    Regenerative pumps are the subject of increased interest in industry as these pumps are low cost, low specific speed, compact and able to deliver high heads with stable performance characteristics. The complex flow-field within the pump represents a considerable challenge to detailed mathematical modelling as there is significant flow separation in the impeller blading. This paper presents the use of a commercial CFD code to simulate the flow within the regenerative pump and compare the CFD results with new experimental data. The CFD results demonstrate that it is possible to represent the helical flowfield for the pump which has only been witnessed in experimental flow visualisation until now. The CFD performance results also demonstrate reasonable agreement with the experimental tests. The CFD models are currently being used to optimise key geometric features to increase pump efficiency

    Scoping study on the significance of mesh resolution vs. scenario uncertainty in the CFD modelling of residential smoke control systems

    Get PDF
    Computational fluid dynamics (CFD) modelling is a commonly applied tool adopted to support the specification and design of common corridor ventilation systems in UK residential buildings. Inputs for the CFD modelling of common corridor ventilation systems are typically premised on a ‘reasonable worst case’, i.e. no specific uncertainty quantification process is undertaken to evaluate the safety level. As such, where the performance of a specific design sits on a probability spectrum is not defined. Furthermore, mesh cell sizes adopted are typically c. 100 – 200 mm. For a large eddy simulation (LES) based CFD code, this is considered coarse for this application and creates a further uncertainty in respect of capturing key behaviours in the CFD model. Both co-existing practices summarised above create uncertainty, either due to parameter choice or the (computational fire and smoke) model. What is not clear is the relative importance of these uncertainties. This paper summarises a scoping study that subjects the noted common corridor CFD application to a probabilistic risk assessment (PRA), using the MaxEnt method. The uncertainty associated with the performance of a reference design is considered at different grid scales (achieving different ‘a posteriori’ mesh quality indicators), with the aim of quantifying the relative importance of uncertainties associated with inputs and scenarios, vs. the fidelity of the CFD model. For the specific case considered herein, it is found that parameter uncertainty has a more significant impact on the confidence of a given design solution relative to that arising from grid resolution, for grid sizes of 100 mm or less. Above this grid resolution, it was found that uncertainty associated with the model dictates. Given the specific ventilation arrangement modelled in this work care should be undertaken in generalising such conclusions

    Patient specific numerical simulation of flow in the human upper airways for assessing the effect of nasal surgery

    Full text link
    The study is looking into the potential of using computational fluid dynamics (CFD) as a tool for predicting the outcome of surgery for alleviation of obstructive sleep apnea syndrome (OSAS). From pre- and post-operative computed tomography (CT) of an OSAS patient, the pre- and post-operative geometries of the patient's upper airways were generated. CFD simulations of laminar flow in the patient's upper airway show that after nasal surgery the mass flow is more evenly distributed between the two nasal cavities and the pressure drop over the nasal cavity has increased. The pressure change is contrary to clinical measurements that the CFD results have been compared with, and this is most likely related to the earlier steps of modelling - CT acquisition and geometry retrieval.Comment: Proceedings of the 12th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, Trondheim, Norway, May 30th - June 1st, 2017, 11 pages, 13 figure

    Computational fluid dynamics model of a quad-rotor helicopter for dynamic analysis

    Get PDF
    The control and performance of a quad-rotor helicopter UAV is greatly influenced by its aerodynamics, which in turn is affected by the interactions with features in its remote environment. This paper presents details of Computational Fluid Dynamics (CFD) simulation and analysis of a quadrotor helicopter. It starts by presenting how SolidWorks software is used to develop a 3-D Computer Aided Design (CAD) model of the quad-rotor helicopter, then describes how CFD is used as a computer based mathematical modelling tool to simulate and analyze the effects of wind flow patterns on the performance and control of the quadrotor helicopter. For the purpose of developing a robust adaptive controller for the quad-rotor helicopter to withstand any environmental constraints, which is not within the scope of this paper; this work accurately models the quad-rotor static and dynamic characteristics from a limited number of time-accurate CFD simulations

    Final results from the EU project AVATAR: aerodynamic modelling of 10 MW wind turbines

    Get PDF
    This paper presents final results from the EU project AVATAR in which aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and more. Special attention is paid to the improvement of low fidelity engineering (BEM based) models with higher fidelity (CFD) models but also with intermediate fidelity free vortex wake (FVW) models. The latter methods were found to be a good basis for improvement of induction modelling in engineering methods amongst others for the prediction of yawed cases, which in AVATAR was found to be one of the most challenging subjects to model. FVW methods also helped to improve the prediction of tip losses. Aero-elastic calculations with BEM based and FVW based models showed that fatigue loads for normal production cases were over predicted with approximately 15% or even more. It should then be realised that the outcome of BEM based models does not only depend on the choice of engineering add-ons (as is often assumed) but it is also heavily dependent on the way the induced velocities are solved. To this end an annulus and element approach are discussed which are assessed with the aid of FVW methods. For the prediction of fatigue loads the so-called element approach is recommended but the derived yaw models rely on an annulus approach which pleads for a generalised solution method for the induced velocities
    corecore