295,094 research outputs found

    Single-shot carrier-envelope-phase measurement in ambient air

    No full text
    The ability to measure and control the carrier envelope phase (CEP) of few-cycle laser pulses is of paramount importance for both frequency metrology and attosecond science. Here, we present a phase meter relying on the CEP-dependent photocurrents induced by circularly polarized few-cycle pulses focused between electrodes in ambient air. The new device facilitates compact single-shot, CEP measurements under ambient conditions and promises CEP tagging at repetition rates orders of magnitude higher than most conventional CEP detection schemes as well as straightforward implementation at longer wavelengths

    Mass Determination from Constraint Effective Potential

    Get PDF
    The Constraint Effective Potential (CEP) allows a determination of the mass and other quantities directly, without relying upon asymptotic correlator decays. We report and discuss the results of some mass calculations in (λΦ4)4(\lambda \Phi^4)_4, obtained from CEP and our improved version of CEP (ICEP).Comment: LATTICE99(Higgs, Yukawa, SUSY

    Sensitive frequency-dependence of the carrier-envelope phase effect on bound-bound transition: an interference perspective

    Full text link
    We investigate numerically with Hylleraas coordinates the frequency dependence of the carrier-envelope phase (CEP) effect on bound-bound transitions of helium induced by an ultrashort laser pulse of few cycles. We find that the CEP effect is very sensitive to the carrier frequency of the laser pulse, occurring regularly even at far-off resonance frequencies. By analyzing a two-level model, we find that the CEP effect can be attributed to the quantum interference between neighboring multi-photon transition pathways, which is made possible by the broadened spectrum of the ultrashort laser pulse. A general picture is developed along this line to understand the sensitivity of the CEP effect to laser's carrier frequency. Multi-level influence on the CEP effect is also discussed

    P4CEP: Towards In-Network Complex Event Processing

    Full text link
    In-network computing using programmable networking hardware is a strong trend in networking that promises to reduce latency and consumption of server resources through offloading to network elements (programmable switches and smart NICs). In particular, the data plane programming language P4 together with powerful P4 networking hardware has spawned projects offloading services into the network, e.g., consensus services or caching services. In this paper, we present a novel case for in-network computing, namely, Complex Event Processing (CEP). CEP processes streams of basic events, e.g., stemming from networked sensors, into meaningful complex events. Traditionally, CEP processing has been performed on servers or overlay networks. However, we argue in this paper that CEP is a good candidate for in-network computing along the communication path avoiding detouring streams to distant servers to minimize communication latency while also exploiting processing capabilities of novel networking hardware. We show that it is feasible to express CEP operations in P4 and also present a tool to compile CEP operations, formulated in our P4CEP rule specification language, to P4 code. Moreover, we identify challenges and problems that we have encountered to show future research directions for implementing full-fledged in-network CEP systems.Comment: 6 pages. Author's versio
    corecore