15 research outputs found

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Some MIMO applications in cognitive radio networks

    Get PDF
    In the last decade, the wireless communication technology has witnessed a rapid development, which led to a rapid growth in wireless applications and services. However, the radio spectrum resources scarcity resulting from using the traditional methods of fixed spectrum resources allocation has potential constraints on this wireless services rapid growth. Consequently, cognitive radio has been emerged as a possible solution for alleviating this spectrum scarcity problem by employing dynamic resource allocation strategies in order to utilize the available spectrum in a more efficient way so that finding opportunities for new wireless application services could be achieved. In cognitive radio networks, the radio spectrum resources utilization is improved by allowing unlicensed users, known as secondary users, to share the spectrum with licensed users, known as primary users, as long as this sharing do not induce harmful interference on the primary users, which completely entitled to utilize the spectrum. Motivated by MIMO techniques that have been used in practical systems as a means for high data rate transmission and a source for spatial diversity, and by its ease implementation with OFDM, different issues in multi-user MIMO (MU-MIMO) in both the uplink and downlink in the context of cognitive radio are studied in this thesis. More specifically, in the first thrust of this thesis, the spectrum spatial holes which could exist in an uplink MU-MIMO cell as a result of the possible free spatial dimensions resulted from the sparse activity of the primary users is studied; a modified sensing algorithm for these spectrum spatial holes that exploit both the block structure of the OFDM signals and the correlation of their activity states along time are proposed. The second thrust is concerned with cognitive radio relaying in the physical layer where the cognitive radio base station (CBS) relays the PU signal while transmitting its own signals to its SUs. We define secondary users with different priorities (different quality of service requirements); the different levels of priority for SUs are achieved by a newly proposed simple linear scheme based on zero forcing called Hierarchal Priority Zero Forcing scheme HPZF

    Performance Analysis and Mitigation Techniques for I/Q-Corrupted OFDM Systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has become a widely adopted modulation technique in modern communications systems due to its multipath resilience and low implementation complexity. The direct conversion architecture is a popular candidate for low-cost, low-power, fully integrated transceiver designs. One of the inevitable problems associated with analog signal processing in direct conversion involves the mismatches in the gain and phases of In-phase (I) and Quadrature-phase (Q) branches. Ideally, the I and Q branches of the quadrature mixer will have perfectly matched gains and are orthogonal in phase. Due to imperfect implementation of the electronics, so called I/Q imbalance emerges and creates interference between subcarriers which are symmetrically apart from the central subcarrier. With practical imbalance levels, basic transceivers fail to maintain the sufficient image rejection, which in turn can cause interference with the desired transmission. Such an I/Q distortion degrades the systems performance if left uncompensated. Moreover, the coexistence of I/Q imbalance and other analog RF imperfections with digital baseband and higher layer functionalities such as multiantenna transmission and radio resource management, reduce the probability of successful transmission. Therefore, mitigation of I/Q imbalance is an essential substance in designing and implementing modern communications systems, while meeting required performance targets and quality of service. This thesis considers techniques to compensate and mitigate I/Q imbalance, when combined with channel estimation, multiantenna transmission, transmission power control, adaptive modulation and multiuser scheduling. The awareness of the quantitative relationship between transceiver parameters and system parameters is crucial in designing and dimensioning of modern communications systems. For this purpose, analytical models to evaluate the performance of an I/Q distorted system are considered

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Advances in parameter estimation, source enumeration, and signal identification for wireless communications

    Get PDF
    Parameter estimation and signal identification play an important role in modern wireless communication systems. In this thesis, we address different parameter estimation and signal identification problems in conjunction with the Internet of Things (IoT), cognitive radio systems, and high speed mobile communications. The focus of Chapter 2 of this thesis is to develop a new uplink multiple access (MA) scheme for the IoT in order to support ubiquitous massive uplink connectivity for devices with sporadic traffic pattern and short packet size. The proposed uplink MA scheme removes the Media Access Control (MAC) address through the signal identification algorithms which are employed at the gateway. The focus of Chapter 3 of this thesis is to develop different maximum Doppler spread (MDS) estimators in multiple-input multiple-output (MIMO) frequency-selective fading channel. The main idea behind the proposed estimators is to reduce the computational complexity while increasing system capacity. The focus of Chapter 4 and Chapter 5 of this thesis is to develop different antenna enumeration algorithms and signal-to-noise ratio (SNR) estimators in MIMO timevarying fading channels, respectively. The main idea is to develop low-complexity algorithms and estimators which are robust to channel impairments. The focus of Chapter 6 of this thesis is to develop a low-complexity space-time block codes (STBC)s identification algorithms for cognitive radio systems. The goal is to design an algorithm that is robust to time-frequency transmission impairments

    Spectrum sensing for cognitive radios: Algorithms, performance, and limitations

    Get PDF
    Inefficient use of radio spectrum is becoming a serious problem as more and more wireless systems are being developed to operate in crowded spectrum bands. Cognitive radio offers a novel solution to overcome the underutilization problem by allowing secondary usage of the spectrum resources along with high reliable communication. Spectrum sensing is a key enabler for cognitive radios. It identifies idle spectrum and provides awareness regarding the radio environment which are essential for the efficient secondary use of the spectrum and coexistence of different wireless systems. The focus of this thesis is on the local and cooperative spectrum sensing algorithms. Local sensing algorithms are proposed for detecting orthogonal frequency division multiplexing (OFDM) based primary user (PU) transmissions using their autocorrelation property. The proposed autocorrelation detectors are simple and computationally efficient. Later, the algorithms are extended to the case of cooperative sensing where multiple secondary users (SUs) collaborate to detect a PU transmission. For cooperation, each SU sends a local decision statistic such as log-likelihood ratio (LLR) to the fusion center (FC) which makes a final decision. Cooperative sensing algorithms are also proposed using sequential and censoring methods. Sequential detection minimizes the average detection time while censoring scheme improves the energy efficiency. The performances of the proposed algorithms are studied through rigorous theoretical analyses and extensive simulations. The distributions of the decision statistics at the SU and the test statistic at the FC are established conditioned on either hypothesis. Later, the effects of quantization and reporting channel errors are considered. Main aim in studying the effects of quantization and channel errors on the cooperative sensing is to provide a framework for the designers to choose the operating values of the number of quantization bits and the target bit error probability (BEP) for the reporting channel such that the performance loss caused by these non-idealities is negligible. Later a performance limitation in the form of BEP wall is established for the cooperative sensing schemes in the presence of reporting channel errors. The BEP wall phenomenon is important as it provides the feasible values for the reporting channel BEP used for designing communication schemes between the SUs and the FC

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    corecore