18,860 research outputs found

    A criterion for separating process calculi

    Get PDF
    We introduce a new criterion, replacement freeness, to discern the relative expressiveness of process calculi. Intuitively, a calculus is strongly replacement free if replacing, within an enclosing context, a process that cannot perform any visible action by an arbitrary process never inhibits the capability of the resulting process to perform a visible action. We prove that there exists no compositional and interaction sensitive encoding of a not strongly replacement free calculus into any strongly replacement free one. We then define a weaker version of replacement freeness, by only considering replacement of closed processes, and prove that, if we additionally require the encoding to preserve name independence, it is not even possible to encode a non replacement free calculus into a weakly replacement free one. As a consequence of our encodability results, we get that many calculi equipped with priority are not replacement free and hence are not encodable into mainstream calculi like CCS and pi-calculus, that instead are strongly replacement free. We also prove that variants of pi-calculus with match among names, pattern matching or polyadic synchronization are only weakly replacement free, hence they are separated both from process calculi with priority and from mainstream calculi.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Priorities Without Priorities: Representing Preemption in Psi-Calculi

    Full text link
    Psi-calculi is a parametric framework for extensions of the pi-calculus with data terms and arbitrary logics. In this framework there is no direct way to represent action priorities, where an action can execute only if all other enabled actions have lower priority. We here demonstrate that the psi-calculi parameters can be chosen such that the effect of action priorities can be encoded. To accomplish this we define an extension of psi-calculi with action priorities, and show that for every calculus in the extended framework there is a corresponding ordinary psi-calculus, without priorities, and a translation between them that satisfies strong operational correspondence. This is a significantly stronger result than for most encodings between process calculi in the literature. We also formally prove in Nominal Isabelle that the standard congruence and structural laws about strong bisimulation hold in psi-calculi extended with priorities.Comment: In Proceedings EXPRESS/SOS 2014, arXiv:1408.127

    Read Operators and their Expressiveness in Process Algebras

    Full text link
    We study two different ways to enhance PAFAS, a process algebra for modelling asynchronous timed concurrent systems, with non-blocking reading actions. We first add reading in the form of a read-action prefix operator. This operator is very flexible, but its somewhat complex semantics requires two types of transition relations. We also present a read-set prefix operator with a simpler semantics, but with syntactic restrictions. We discuss the expressiveness of read prefixes; in particular, we compare them to read-arcs in Petri nets and justify the simple semantics of the second variant by showing that its processes can be translated into processes of the first with timed-bisimilar behaviour. It is still an open problem whether the first algebra is more expressive than the second; we give a number of laws that are interesting in their own right, and can help to find a backward translation.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Enabling RAN Slicing Through Carrier Aggregation in mmWave Cellular Networks

    Full text link
    The ever increasing number of connected devices and of new and heterogeneous mobile use cases implies that 5G cellular systems will face demanding technical challenges. For example, Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) scenarios present orthogonal Quality of Service (QoS) requirements that 5G aims to satisfy with a unified Radio Access Network (RAN) design. Network slicing and mmWave communications have been identified as possible enablers for 5G. They provide, respectively, the necessary scalability and flexibility to adapt the network to each specific use case environment, and low latency and multi-gigabit-per-second wireless links, which tap into a vast, currently unused portion of the spectrum. The optimization and integration of these technologies is still an open research challenge, which requires innovations at different layers of the protocol stack. This paper proposes to combine them in a RAN slicing framework for mmWaves, based on carrier aggregation. Notably, we introduce MilliSlice, a cross-carrier scheduling policy that exploits the diversity of the carriers and maximizes their utilization, thus simultaneously guaranteeing high throughput for the eMBB slices and low latency and high reliability for the URLLC flows.Comment: 8 pages, 8 figures. Proc. of the 18th Mediterranean Communication and Computer Networking Conference (MedComNet 2020), Arona, Italy, 202

    Balancing climate change mitigation and environmental protection interests in the EU Directive on carbon capture and storage

    Get PDF
    The EU Climate and Energy Package highlights the potential contradictions between the climate change imperative of reducing GHGs emissions and the importance to maintain environmental integrity. While the package supports climate change mainstreaming, it remains to be seen to what extent it succeeds in achieving internal environmental integration between climate change mitigation and other environment- protection objectives. Directive 2009/31/EC on the capture and geological storage of carbon dioxide (hereinafter the CCS Directive) offers a paradigmatic example of this potential conflict. One of the main regulatory challenges arising from the CCS Directive relates to finding the proper balance between the different interests involved and the not-fully-consistent objectives of environmental protection, climate change mitigation, and energy security. The present article will discuss this regulatory challenge and examine how the CCS Directive’s regulatory framework for CCS permits a combination of the various interests at stake and the giving of proper weight to concerns about environmental protection. The role that the precautionary principle in conjunction with the proportionality principle may have in balancing climate change mitigation and environment-protection interests will be considere
    corecore