458,312 research outputs found

    Causality and Micro-Causality in Curved Spacetime

    Full text link
    We consider how causality and micro-causality are realised in QED in curved spacetime. The photon propagator is found to exhibit novel non-analytic behaviour due to vacuum polarization, which invalidates the Kramers-Kronig dispersion relation and calls into question the validity of micro-causality in curved spacetime. This non-analyticity is ultimately related to the generic focusing nature of congruences of geodesics in curved spacetime, as implied by the null energy condition, and the existence of conjugate points. These results arise from a calculation of the complete non-perturbative frequency dependence of the vacuum polarization tensor in QED, using novel world-line path integral methods together with the Penrose plane-wave limit of spacetime in the neighbourhood of a null geodesic. The refractive index of curved spacetime is shown to exhibit superluminal phase velocities, dispersion, absorption (due to \gamma \to e^+e^-) and bi-refringence, but we demonstrate that the wavefront velocity (the high-frequency limit of the phase velocity) is indeed c, thereby guaranteeing that causality itself is respected.Comment: 16 pages, 11 figures, JHEP3, microcausality now shown to be respected even when the Kramers-Kronig relation is violate

    The causal ladder and the strength of K-causality. I

    Full text link
    A unifying framework for the study of causal relations is presented. The causal relations are regarded as subsets of M x M and the role of the corresponding antisymmetry conditions in the construction of the causal ladder is stressed. The causal hierarchy of spacetime is built from chronology up to K-causality and new characterizations of the distinction and strong causality properties are obtained. The closure of the causal future is not transitive, as a consequence its repeated composition leads to an infinite causal subladder between strong causality and K-causality - the A-causality subladder. A spacetime example is given which proves that K-causality differs from infinite A-causality.Comment: 16 pages, one figure. Old title: ``On the relationship between K-causality and infinite A-causality''. Some typos fixed; small change in the proof of lemma 4.

    Delegated causality of complex systems

    No full text
    A notion of delegated causality is introduced here. This subtle kind of causality is dual to interventional causality. Delegated causality elucidates the causal role of dynamical systems at the “edge of chaos”, explicates evident cases of downward causation, and relates emergent phenomena to Gödel’s incompleteness theorem. Apparently rich implications are noticed in biology and Chinese philosophy. The perspective of delegated causality supports cognitive interpretations of self-organization and evolution

    Causality violation and singularities

    Get PDF
    We show that singularities necessarily occur when a boundary of causality violating set exists in a space-time under the physically suitable assumptions except the global causality condition in the Hawking-Penrose singularity theorems. Instead of the global causality condition, we impose some restrictions on the causality violating sets to show the occurrence of singularities.Comment: 11 pages, latex, 2 eps figure
    • …
    corecore