28,951 research outputs found
Cu-Mg-Fe-O-(Ce) complex oxides as catalysts of selective catalytic oxidation of ammonia to dinitrogen (NH3-SCO)
Multicomponent oxide systems 800-Cu-Mg-Fe-O and 800-Cu-Mg-Fe-O-Ce were tested as catalysts of selective catalytic oxidation of ammonia to dinitrogen (NH3-SCO) process. Materials were obtained by calcination of hydrotalcite-like compounds at temperature 800 degrees C. Some catalysts were doped with cerium by the wet impregnation method. Not only simple oxides, but also complex spinel-like phases were formed during calcination. The influence of chemical composition, especially the occurrence of spinel phases, copper loading and impregnation by cerium, were investigated. Materials were characterized by several techniques: X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), low-temperature nitrogen adsorption (BET), cyclic voltammetry (CV), temperature programmed reduction (H-2-TPR), UV-vis diffuse reflectance spectroscopy and scanning electron microscopy (SEM). Examined oxides were found to be active as catalysts of selective catalytic oxidation of ammonia with high selectivity to N-2 at temperatures above 300 degrees C. Catalysts with low copper amounts (up to 12 wt %) impregnated by Ce were slightly more active at lower temperatures (up to 350 degrees C) than non-impregnated samples. However, when an optimal amount of copper (12 wt %) was used, the presence of cerium did not affect catalytic properties. Copper overloading caused a rearrangement of present phases accompanied by the steep changes in reducibility, specific surface area, direct band gap, crystallinity, dispersion of CuO active phase and Cu2+ accessibility leading to the decrease in catalytic activity.Web of Science102art. no. 15
Evaluation of techniques for removal of spacecraft contaminants from activated carbon
Alternative techniques for the regeneration of carbon contaminated with various spacecraft contaminants were evaluated. Four different modes of regeneration were evaluated: (1) thermal desorption via vacuum, (2) thermal desorption via nitrogen purge, (3) in-situ catalytic oxidation of adsorbed contaminants, and (4) in-situ non-catalytic oxidation of adsorbed contaminants
AD–OX: A sequential oxidative process for water treatment— Adsorption and batch CWAO regeneration of activated carbon
A sequential process for water treatment involving usual adsorption on activated carbon (AC) followed by wet air catalytic oxidation of the adsorbed pollutants has been carried out in a fixed bed reactor with a mixture of two model pollutants. The first step achieves water purification while the second one reduces the organic pollution but also, more importantly, performs some AC in situ regeneration.
The experimental work has been done with AC yet extensively used and stabilized by long range continuous oxidation. The two steps have been analyzed successively showing very important drop of adsorption capacity with respect to fresh AC but efficient oxidative partial regeneration. As expected with used AC no more evolution occurs in between two consecutive runs. The first step of competitive adsorption has been simulated by a model leading to higher diffusivities than estimations based on correlations. The main features of the complex second step, involving simultaneous non-isothermal desorption and three phase catalytic reaction, are qualitatively explained
Catalytic Oxidation of Styrene in the Presence of Square Planar Cobalt(iii) Complexes of Polyanionic Chelating Ligands
Styrene has been catalytically oxidised in the presence of iodosoarenes and square planar cobalt(iii) complexes of
polyanionic chelating (PAC) ligands; possible intermediates in these oxygen atom transfer reactions include cobalt(v)-oxo complexes
Geometry-induced pulse instability in microdesigned catalysts: the effect of boundary curvature
We explore the effect of boundary curvature on the instability of reactive
pulses in the catalytic oxidation of CO on microdesigned Pt catalysts. Using
ring-shaped domains of various radii, we find that the pulses disappear
(decollate from the inert boundary) at a turning point bifurcation, and trace
this boundary in both physical and geometrical parameter space. These
computations corroborate experimental observations of pulse decollation.Comment: submitted to Phys. Rev.
Catalytic Wet Air Oxidation of Aqueous Organic Mixtures
Catalytic Wet Air Oxidation (CWAO) has been investigated for the treatment of water contaminated by 4-hydroxybenzoic acid (4HBA) and equimolar mixture of phenol-4HBA. Both batch measurements for kinetics determination and continuous
fixed bed operation have been performed on the same Activated Carbon (AC). After a fast initial deactivation AC was proved stable and efficient at moderate
temperature and oxygen pressure, like for phenol degradation.
The kinetic study in the case of highly adsorbing material as AC may require complex approach to account for the variation of adsorbed reactants during batch
oxidation. Adsorption isotherms at reaction temperature and with aged AC have been obtained according to Langmuir equation and used in 4HBA mass balance to
derive more significant kinetic parameters. At high catalyst loading and relatively low pollutant concentration, the variation of 4HBA during the batch may be even higher on the solid than in the aqueous phase
Dangling and hydrolyzed ligand arms in [Mn3] and [Mn6] coordination assemblies: synthesis, characterization, and functional activity
Two flexible, branched, and sterically constrained di- and tripodal side arms around a phenol backbone were utilized in ligands H3L1 and H5L2 to isolate {Mn6} and {Mn3} coordination aggregates. 2,6-Bis{(1-hydroxy-2-methylpropan-2-ylimino)methyl}-4-methylphenol (H3L1) gave trinuclear complex [Mn3(μ-H2L1)2(μ1,3-O2CCH3)4(CH3OH)2](ClO4)2·4CH3OH (1), whereas 2,6-bis[{1-hydroxy-2-(hydroxymethyl)butan-2-ylimino}methyl]-4-methylphenol (H5L2) provided hexanuclear complex [Mn6(μ4-H2L2)2(μ-HL3)2(μ3-OH)2(μ1,3-O2CC2H5)4](ClO4)2·2H2O (2). Binding of acetates and coordination of {H2L1}− provided a linear MnIIIMnIIMnIII arrangement in 1. A MnIII6 fused diadamantane-type assembly was obtained in 2 from propionate bridges, coordination of {H2L2}3–, and in situ generated {HL3}2–. The magnetic characterization of 1 and 2 revealed the properties dominated by intramolecular anti-ferromagnetic exchange interactions, and this was confirmed using density functional theory calculations. Complex 1 exhibited field-induced slow magnetic relaxation at 2 K due to the axial anisotropy of MnIII centers. Both the complexes show effective solvent-dependent catechol oxidation toward 3,5-di-tert-butylcatechol in air. The catechol oxidation abilities are comparable from two complexes of different nuclearity and structure
Catalytic oxidation of trace levels of methane in oxygen in a tubular reactor
An experimental investigation of catalytic oxidation of trace levels of methane in oxygen was conducted in a tubular reactor. Two noble metal solid catalysts were explored: a 1-percent platinum on gamma alumina and a 0.5-percent rhodium on gamma alumina. For each catalyst the activity was determined as a function of temperature, pressure, space velocity, and methane concentration. The rhodium catalyst was considerably more active than the platinum catalyst. For each catalyst mass transfer had a pronounced effect upon activity at low space velocity
Studies of CO oxidation on Pt/SnO2 catalyst in a surrogate CO2 laser facility
Samples of 1% Pt/SnO2 catalyst were exposed to a stoichiometric gas mixture of 1% CO and 1.2% O2 in helium over a range of flowrates from 5 to 15 sccm and temperatures from 338 to 394 Kelvin. Reaction rate constants for the catalytic oxidation of carbon monoxide and their temperature dependence were determined and compared with previous literature values
CO oxidation studies over supported noble metal catalysts and single crystals: A review
The catalytic oxidation of CO over noble metal catalysts is reviewed. Results obtained on supported noble metal catalysts and single crystals both at high pressures and under UHV conditions are compared. The underlying causes which result in surface instabilities and multiple steady-state oscillations are considered, in particular, the occurrence of hot spots. CO islands of reactivity, surface oxide formation and phase transformations under oscillatory conditions are discussed
- …
