21,800 research outputs found

    A Blotto Game with Incomplete Information

    Get PDF
    We consider a Blotto Game with Incomplete Information. A pure-strategy symmetric monotonic Bayesian equilibrium is found and its properties are discussed. Key words: Blotto Game, Imperfect Information. Journal of Economic Literature Classification: C72, D72.

    On Instability of Fullerene C72

    Get PDF
    The most important fullerene is buckminsterfullerene C60, obtained by leap-frog transformation of the fullerene C20. The second smallest fullerene obtained by leap-frog transformation is C72 (obtained from C24). It is surprising that C72 is unstable. The standard explanation of this fact is based on steric strain resulting from the existence of two hexagons, each surrounded by 6 hexagons. By analyzing the p-electron content, it is demonstrated that these hexagons show some »pentagon-like« behavior that may be the cause (or an additional cause) of the instability of C72. Hence, it is shown that there may be topological (non-steric) reasons for the instability of C72

    Hydrogen-bonding synthons in lamotrigine salts: 3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 2-[(2-carboxyphenyl)disulfanyl]benzoate in its monohydrate and anhydrous forms

    Get PDF
    Lamotrigine is a drug used in the treatment of epilepsy and related convulsive diseases. The drug in its free form is rather inadequate for pharmacological use due to poor absorption by the patient, which limits its bioavailability. On the other hand, the lamotrigine mol­ecule is an excellent hydrogen-bonding agent and this has been exploited intensively in the search for better formulations. The formulation presently commercialized (under the brand name Lamictal) is rather complex and includes a number of anions in addition to the active pharmaceutical ingredient (API). The title salts of lamotrigine, namely 3,5-di­amino-6-(2,3-di­chloro­phen­yl)-1,2,4-triazin-2-ium 2-[(2-carb­oxy­phen­yl)di­sul­fan­yl]benzoate monohydrate, C9H8Cl2N5+·C14H9O4S2-·H2O, (I), and the anhydrate, C9H8Cl2N5+·C14H9O4S2-, (II), contain a lamotriginium cation (L), a hydrogen di­thio­dibenzoate monoanion (D) and, in the case of (I), a disordered solvent water mol­ecule. Both L and D present their usual configurations severely twisted around their central C-C and S-S bonds, respectively. The supra­molecular structure generated by the many available donor and acceptor sites is characterized by a planar anti­symmetric motif of the form D-L-L-D, i.e. the structural building block. Although this characteristic motif is extremely similar in both structures, its conformation involves different donors and acceptors in its R22(8) central L-L homosynthon. The lateral R22(8) D-L hetero­synthons are, on the other hand, identical. These substructures are further connected by strong hydrogen bonds into broad two-dimensional structures, in turn weakly linked to each other. Even if the homo- and heterosynthons in (I) and (II) are rather frequent in lamotrigine structural chemistry, the composite tetra­meric synthon appears to be much less common. The occurrence of these motifs among lamotrigine salts and cocrystals is analyzed.Fil: Freire Espeleta, Eleonora. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Polla, Griselda Ines. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Baggio, Ricardo Fortunato. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentin

    Tetra­aceto­nitrile­lithium tetra­iso­thio­cyanato­borate

    Get PDF
    The crystal structure of the title salt, [Li(CH3CN)4][B(NCS)4], is composed of discrete cations and anions. Both the Li and B atoms show a tetra­hedral coordination by four equal ligands. The aceto­nitrile and iso­thio­cyanate ligands are linear. The bond angles at the B atom are close to the ideal tetra­hedral value [108.92 (18)–109.94 (16)°], but the bond angles at the Li atom show larger deviations [106.15 (17)–113.70 (17)°]

    Self-protection and insurance with interdependencies

    Get PDF
    We study optimal investment in self-protection of insured individuals when they face interdependencies in the form of potential contamination from others. If individuals cannot coordinate their actions, then the positive externality of investing in self-protection implies that, in equilibrium, individuals underinvest in self-protection. Limiting insurance coverage through deductibles or selling “at-fault” insurance can partially internalize this externality and thereby improve individual and social welfare. JEL Classification: C72, D62, D8

    Glycyl-L-proline hemihydrate at 298 K

    Get PDF

    The N-end rule pathway is a sensor of heme

    Get PDF
    The conjugation of arginine, by arginyl-transferase, to N-terminal aspartate, glutamate or oxidized cysteine is a part of the N-end rule pathway of protein degradation. We report that arginyl-transferase of either the mouse or the yeast Saccharomyces cerevisiae is inhibited by hemin (Fe3+-heme). Furthermore, we show that hemin inhibits arginyl-transferase through a redox mechanism that involves the formation of disulfide between the enzyme's Cys-71 and Cys-72 residues. Remarkably, hemin also induces the proteasome-dependent degradation of arginyl-transferase in vivo, thus acting as both a "stoichiometric" and "catalytic" down-regulator of the N-end rule pathway. In addition, hemin was found to interact with the yeast and mouse E3 ubiquitin ligases of the N-end rule pathway. One of substrate-binding sites of the yeast N-end rule's ubiquitin ligase UBR1 targets CUP9, a transcriptional repressor. This site of UBR1 is autoinhibited but can be allosterically activated by peptides that bear destabilizing N-terminal residues and interact with two other substrate-binding sites of UBR1. We show that hemin does not directly occlude the substrate-binding sites of UBR1 but blocks the activation of its CUP9-binding site by dipeptides. The N-end rule pathway, a known sensor of short peptides, nitric oxide, and oxygen, is now a sensor of heme as well. One function of the N-end rule pathway may be to coordinate the activities of small effectors, both reacting to and controlling the redox dynamics of heme, oxygen, nitric oxide, thiols, and other compounds, in part through conditional degradation of specific transcription factors and G protein regulators

    State space mixed models for longitudinal obsservations with binary and binomial responses

    Get PDF
    We propose a new class of state space models for longitudinal discrete response data where the observation equation is specified in an additive form involving both deterministic and random linear predictors. These models allow us to explicitly address the effects of trend, seaonal or other time-varying covariates while preserving the power of state space models in modeling serial dependence in the data. We develop a Markov Chain Monte Carlo algorithm to carry out statistical inferene for models with binary and binomial responses, in which we invoke de Jong and Shephard's (1995) simulaton smoother to establish an efficent sampling procedure for the state variables. To quantify and control the sensitivity of posteriors on the priors of variance parameters, we add a signal-to-noise ratio type parmeter in the specification of these priors. Finally, we ilustrate the applicability of the proposed state space mixed models for longitudinal binomial response data in both simulation studies and data examples

    A Numerical Algorithm to find Soft-Constrained Nash Equilibria in Scalar LQ-Games

    Get PDF
    In this paper we provide a numerical algorithm to calculate all soft-constrained Nash equilibria in a regular scalar indefinite linear-quadratic game.The algorithm is based on the calculation of the eigenstructure of a certain matrix.The analysis follows the lines of the approach taken by Engwerda in [7] to calculate the solutions of a set of scalar coupled feedback Nash algebraic Riccati equations.C63;C72;C73
    corecore