5,631 research outputs found

    Exposure to the complement C5b-9 complex sensitizes 661W photoreceptor cells to both apoptosis and necroptosis.

    Get PDF
    The loss of photoreceptors is the defining characteristic of many retinal degenerative diseases, but the mechanisms that regulate photoreceptor cell death are not fully understood. Here we have used the 661W cone photoreceptor cell line to ask whether exposure to the terminal complement complex C5b-9 induces cell death and/or modulates the sensitivity of these cells to other cellular stressors. 661W cone photoreceptors were exposed to complete normal human serum following antibody blockade of CD59. Apoptosis induction was assessed morphologically, by flow cytometry, and on western blotting by probing for cleaved PARP and activated caspase-3. Necroptosis was assessed by flow cytometry and Sirtuin 2 inhibition using 2-cyano-3-[5-(2,5-dichlorophenyl)-2-furyl]-N-5-quinolinylacrylamide (AGK2). The sensitivity of 661W cells to ionomycin, staurosporine, peroxide and chelerythrine was also investigated, with or without prior formation of C5b-9. 661W cells underwent apoptotic cell death following exposure to C5b-9, as judged by poly(ADP-ribose) polymerase 1 cleavage and activation of caspase-3. We also observed apoptotic cell death in response to staurosporine, but 661W cells were resistant to both ionomycin and peroxide. Interestingly, C5b-9 significantly increased 661W sensitivity to staurosporine-induced apoptosis and necroptosis. These studies show that low levels of C5b-9 on 661W cells can induce apoptosis, and that C5b-9 specifically sensitizes 661W cells to certain apoptotic and necroptotic pathways. Our observations provide new insight into the potential role of the complement system in photoreceptor loss, with implications for the molecular aetiology of retinal disease

    Retinal pigment epithelial cells mitigate the effects of complement attack by endocytosis of C5b-9

    Get PDF
    Retinal pigment epithelial (RPE) cell death is a hallmark of age-related macular degeneration. The alternative pathway of complement activation is strongly implicated in RPE cell dysfunction and loss in age-related macular degeneration; therefore, it is critical that RPE cells use molecular strategies to mitigate the potentially harmful effects of complement attack. We show that the terminal complement complex C5b-9 assembles rapidly on the basal surface of cultured primary porcine RPE cells but disappears over 48 h without any discernable adverse effects on the cells. However, in the presence of the dynamin inhibitor dynasore, C5b-9 was almost completely retained at the cell surface, suggesting that, under normal circumstances, it is eliminated via the endocytic pathway. In support of this idea, we observed that C5b-9 colocalizes with the early endosome marker EEA1 and that, in the presence of protease inhibitors, it can be detected in lysosomes. Preventing the endocytosis of C5b-9 by RPE cells led to structural defects in mitochondrial morphology consistent with cell stress. We conclude that RPE cells use the endocytic pathway to prevent the accumulation of C5b-9 on the cell surface and that processing and destruction of C5b-9 by this route are essential for RPE cell survival

    Sublytic Terminal Complement Components Induce Eryptosis in Autoimmune Haemolytic Anaemia Related to IgM Autoantibodies

    Get PDF
    BACKGROUND/AIMS: Eryptosis, the suicidal death of red blood cells (RBCs), is characterized by phosphatidylserine (PS) exposure at the cell surface. It can be catalysed by a variety of abnormal conditions and diseases. Until now, the many questions surrounding the physiology and pathophysiology of eryptosis have not been sufficiently answered. Recently, we demonstrated IgM and IgA autoantibodies (aab) to induce PS exposure on circulating RBCs of patients with autoimmune haemolytic anaemia (AIHA). However, it remained unclear how these aab lead to eryptosis. METHODS: Serum and plasma samples from patients with clinically relevant AIHA of cold type were used to induce eryptosis in O RBCs. Serum containing fresh complement from healthy donors, antibodies to complement component, and complement factor depleted sera were added to examine the influence of the complement on PS-exposure. RBC bound annexin V PE were analysed by flow cytometry. RESULTS: Eryptosis related to IgM aab was found to be dependent on complement activation and could be effectively inhibited by EDTA, serum heat inactivation and anti-C5. PS exposure increased with sequential activation of the sublytic terminal complement components C5b6, C5b-7 and was most significant at the C5b-8 stage. A decrease was observed following the formation of the lytic membrane attack complex C5b-9, either because of lysis of eryptotic RBCs or because of inhibition of eryptosis by C9. CONCLUSION: Our findings reflect new aspects on RBC destruction in AIHA as well the impact of the terminal complement complexes on the RBC membrane. The striking differences to nucleated cell apoptosis may even have physiological meaning of RBC acting as a buffer of the complement system

    Do Archaea and bacteria co-infection have a role in the pathogenesis of chronic chagasic cardiopathy?

    Get PDF
    Chronic cardiopathy (CC) in Chagas disease is a fibrotic myocarditis with C5b-9 complement deposition. Mycoplasma and Chlamydia may interfere with the complement response. Proteolytic enzymes and archaeal genes that have been described in Trypanosoma cruzi may increase its virulence. Here we tested the hypothesis that different ratios of Mycoplasma, Chlamydia and archaeal organisms, which are frequent symbionts, may be associated with chagasic clinical forms. MATERIALS AND METHODS: eight indeterminate form (IF) and 20 CC chagasic endomyocardial biopsies were submitted to in situ hybridization, electron and immunoelectron microscopy and PCR techniques for detection of Mycoplasma pneumoniae (MP), Chlamydia pneumoniae(CP), C5b-9 and archaeal-like bodies. RESULTS: MP and CP-DNA were always present at lower levels in CC than in IF (p < 0.001) and were correlated with each other only in CC. Electron microscopy revealed Mycoplasma, Chlamydia and two types of archaeal-like bodies. One had electron dense lipid content (EDL) and was mainly present in IF. The other had electron lucent content (ELC) and was mainly present in CC. In this group, ELC correlated negatively with the other microbes and EDL and positively with C5b-9. The CC group was positive for Archaea and T. cruzi DNA. In conclusion, different amounts of Mycoplasma, Chlamydia and archaeal organisms may be implicated in complement activation and may have a role in Chagas disease outcome.FAPESPCNPqFundação Zerbin

    C1q-targeted inhibition of the classical complement pathway prevents injury in a novel mouse model of acute motor axonal neuropathy

    Get PDF
    Introduction Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. Results and Conclusions In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy

    Immune myopathies with perimysial pathology: Clinical and laboratory features

    Get PDF
    ObjectiveImmune myopathies with perimysial pathology (IMPP) have a combination of damage to perimysial connective tissue and muscle fiber necrosis, more prominent near the perimysium. We studied the clinical and laboratory correlates of patients with pathologically defined IMPP.MethodsThis is a retrospective chart and pathology review of 57 consecutive patients with IMPP myopathology and, for comparison, 20 patients with dermatomyositis with vascular pathology (DM-VP).ResultsCompared with DM-VP, IMPP patients more commonly had interstitial lung disease (ILD) (p &lt; 0.01), Raynaud phenomenon (p &lt; 0.05), mechanic's hands (p &lt; 0.05), arthralgias (p &lt; 0.001), and a sustained response to immunomodulatory therapy (p &lt; 0.05), and less frequently had a concurrent malignancy (p &lt; 0.01). IMPP patients had higher serum creatine kinase values (p &lt; 0.05), more frequent serum Jo-1 (p &lt; 0.03) or SSA/SSA52 autoantibodies (p &lt; 0.05), and less frequent antinuclear antibodies (p &lt; 0.01). IMPP patients with serum Jo-1/antisynthetase antibodies were more likely to have ILD (p &lt; 0.05) and inflammatory arthritis (p &lt; 0.05) than IMPP patients without these antibodies.ConclusionsIMPP myopathology is associated with an increased risk of ILD, Raynaud phenomenon, mechanic's hands, and inflammatory arthritis when compared with another immune myopathy (DM-VP). IMPP patients require regular screening for ILD, particularly those with antisynthetase antibodies. The absence of myositis-specific autoantibodies in a large percentage of IMPP patients emphasizes the important role for myopathology in identifying patients at higher risk of severe comorbid conditions such as ILD.</jats:sec

    Marked central nervous system pathology in CD59 knockout rats following passive transfer of Neuromyelitis optica immunoglobulin G.

    Get PDF
    Neuromyelitis optica spectrum disorders (herein called NMO) is an inflammatory demyelinating disease of the central nervous system in which pathogenesis involves complement-dependent cytotoxicity (CDC) produced by immunoglobulin G autoantibodies targeting aquaporin-4 (AQP4-IgG) on astrocytes. We reported evidence previously, using CD59-/- mice, that the membrane-associated complement inhibitor CD59 modulates CDC in NMO (Zhang and Verkman, J. Autoimmun. 53:67-77, 2014). Motivated by the observation that rats, unlike mice, have human-like complement activity, here we generated CD59-/- rats to investigate the role of CD59 in NMO and to create NMO pathology by passive transfer of AQP4-IgG under conditions in which minimal pathology is produced in normal rats. CD59-/- rats generated by CRISPR/Cas9 technology showed no overt phenotype at baseline except for mild hemolysis. CDC assays in astrocyte cultures and cerebellar slices from CD59-/- rats showed much greater sensitivity to AQP4-IgG and complement than those from CD59+/+ rats. Intracerebral administration of AQP4-IgG in CD59-/- rats produced marked NMO pathology, with astrocytopathy, inflammation, deposition of activated complement, and demyelination, whereas identically treated CD59+/+ rats showed minimal pathology. A single, intracisternal injection of AQP4-IgG in CD59-/- rats produced hindlimb paralysis by 3 days, with inflammation and deposition of activated complement in spinal cord, optic nerves and brain periventricular and surface matter, with most marked astrocyte injury in cervical spinal cord. These results implicate an important role of CD59 in modulating NMO pathology in rats and demonstrate amplification of AQP4-IgG-induced NMO disease with CD59 knockout
    corecore