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Retinal Pigment Epithelial Cells Mitigate the Effects of
Complement Attack by Endocytosis of C5b-9

Apostolos Georgiannakis, Tom Burgoyne, Katharina Lueck, Clare Futter,

John Greenwood, and Stephen E. Moss

Retinal pigment epithelial (RPE) cell death is a hallmark of age-related macular degeneration. The alternative pathway of com-

plement activation is strongly implicated in RPE cell dysfunction and loss in age-related macular degeneration; therefore, it is

critical that RPE cells use molecular strategies to mitigate the potentially harmful effects of complement attack. We show that

the terminal complement complex C5b-9 assembles rapidly on the basal surface of cultured primary porcine RPE cells but dis-

appears over 48 h without any discernable adverse effects on the cells. However, in the presence of the dynamin inhibitor dynasore,

C5b-9 was almost completely retained at the cell surface, suggesting that, under normal circumstances, it is eliminated via the

endocytic pathway. In support of this idea, we observed that C5b-9 colocalizes with the early endosome marker EEA1 and that,

in the presence of protease inhibitors, it can be detected in lysosomes. Preventing the endocytosis of C5b-9 by RPE cells led to

structural defects in mitochondrial morphology consistent with cell stress. We conclude that RPE cells use the endocytic pathway

to prevent the accumulation of C5b-9 on the cell surface and that processing and destruction of C5b-9 by this route are essential for

RPE cell survival. The Journal of Immunology, 2015, 195: 3382–3389.

A
ge-related macular degeneration (AMD) is the leading
cause of blindness in industrialized nations in people
aged .65 y (1). In early AMD, the disease pathology

typically affects the retinal pigment epithelial (RPE) cells and
choriocapillaris, with the accumulation of extracellular lipo-
proteinaceous deposits (drusen) between the basal RPE cells and
Bruch’s membrane (2). As the disease progresses, additional
diffuse deposits form beneath the RPE cells that may contribute
to cellular dysfunction by creating a barrier to diffusion between
the RPE cells and the blood supply of the choroid (3, 4). Al-
though the mechanisms that lead to the formation of these
subretinal deposits are not understood, previous research dem-
onstrated that they, and drusen, are rich in a number of inflam-
matory proteins, such as apolipoprotein E, amyloid P component,
vitronectin, and complement proteins (e.g., C3b, C5, and C5b-9)
(5–7). The accumulation of these deposits is suggestive of defects
in complement regulation and is consistent with the presence of
a number of genetic loci in complement genes associated with
AMD susceptibility, in particular the single-nucleotide polymor-
phism in complement factor H (CFH) that switches Tyr402 to the
risk-associated His402 (8–11). Additional risk alleles in the genes

encoding C2, C3, C9, CFB, CFHR1, CFHR3, and CFI (12–16)

point to a causative role for the innate immune system in AMD

pathogenesis (17, 18).
Complement activation can be triggered by the classical, lectin,

and alternative pathways and is normally kept in check by reg-

ulators, such as CFH. However, abnormalities in complement

regulators and/or activators may lead to inappropriate activation

of C3 and, ultimately, formation of the C5b-9 complex (19–22).

C5b-9 assembly begins with the cleavage of C5 molecules into

C5a and C5b via the C5 convertase (23). Then, C5b sequentially

associates with the C6, C7, C8, and C9 complement proteins to

assemble the membrane-associated C5b-7, C5b-8, and C5b-9

complexes (24). The number of C9 monomers that incorporates

into the terminal complex is a determinant of the size of the C5b-

9 pore; in bacteria and mammalian erythrocytes, the formation of

multiple pores leads to death of the target cell (25, 26). However,

nucleated cells are much more resistant to C5b-9, and rather than

causing cell death, formation of the complex may stimulate cel-

lular responses, such as a transient increase in intracellular cal-

cium (27–29), activation of protein kinases (30), and changes in

gene transcription (31). Of relevance to the pathogenesis of the

neovascular form of AMD, sublytic C5b-9 was shown to increase

the expression and secretion of vascular endothelial growth factor

in RPE cells (27, 32, 33).
In the human retina, RPE cells form a critical interface in

between the blood, circulating complement proteins, and the

retina. Consequently, the basal aspect of the RPE cells is a site

for C5b-9 assembly, and the complex was identified in the RPE

cell/Bruch’s membrane in eyes as young as 5 y of age (34). The

presence of C5b-9 increases with normal ageing, but it accu-

mulates at higher levels in individuals with risk-associated AMD

genotypes (35). In this study, we examined the mechanism used

by RPE cells to eliminate C5b-9, because defects in this process

may account for the accumulation of C5b-9 observed in AMD.

We show that basal C5b-9 is rapidly cleared from the cell surface

by endocytosis and that if this process is blocked, to mimic

a dysfunctional clearance mechanism, the cells develop signs of
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mitochondrial stress, one of the hallmarks of the RPE cells in
AMD (36). Although there is no direct evidence that the endo-
cytic pathway is disrupted in AMD, our results suggest that,
via its effects on mitochondria, chronic exposure to C5b-9 may
contribute to RPE cell dysfunction, inflammasome activation
(37), and the cellular pathology of AMD.

Materials and Methods
RPE cell isolation and culture

All experiments were performed using primary porcine RPE cells iso-
lated from chilled porcine eyes freshly delivered from an abattoir. Once
the eyes were detached from the surrounding muscle tissue, they were
disinfected using PBS and Videne surgical scrub (Williams Medical
Supplies; D748980) and placed at 4˚C for 30 min in PBS and penicillin/
streptomycin (1 mg/ml). The eyes were cut underneath the ora serrate,
the anterior part (including the lens and vitreous) was discarded, and the
posterior part (retina and RPE cells) was processed. The retina was de-
tached from the RPE cell monolayer, cut at the optic nerve, and ho-
mogenized in KCl buffer (0.3 M KCl, 10 mM HEPES, 0.5 mM CaCl2,
and 1 mM MgCl2 [pH 7]) containing 48% sucrose solution. Trypsin-
EDTA (103; Life Technologies) was added to the posterior part of
each eye (20 min at 37˚C), and RPE cells were detached and isolated by
repetitive pipetting. RPE cells were pelleted by centrifugation at 2000
rpm for 3 min, resuspended in fresh DMEM containing 10% FBS and
100 U/ml penicillin/streptomycin, and seeded into six-well plates
(Nunclon Delta Surface; Thermo Scientific; 140675) at a density of
∼105 cells/well. To make the basal surface of RPE cells accessible to the
C5b-9 complex assembly, RPE cells were cultured on 12-well polyester
Transwell inserts (catalog no. 734-1579; Corning). Cultivation of RPE
cells in Transwells allowed cells to polarize and, therefore, mimic their
morphology in the mammalian eye in vivo. Initially, cells were cultured
in DMEM containing 10% FBS and 100 U/ml penicillin/streptomycin.
Once they reached a confluent state, the amount of FBS was reduced to
1%. As a general practice, cells were maintained in Transwell inserts for
7–21 d prior to experimentation. To ensure the development of a properly
formed monolayer within the Transwell plates, the transepithelial electrical
resistance (TEER) was measured weekly, using an epithelial volt-ohm
meter (World Precision Instruments), as well as after described treat-
ments. To determine TEER (V/cm2), values of Transwells without cells
were subtracted from the experimentally measured values. These values
were then multiplied by the surface area of the Transwell.

Formation of the C5b-9 complex

Cells were washed once with sterile PBS and incubated with 500 ml
DMEM on the apical surface. On the basal surface, cells were treated
with 500 ml DMEM containing the C5b-6 complex (0.2 mg/ml) and C7
(60 mg/ml), C8 (50 mg/ml), and C9 (60 mg/ml) purified complement
proteins. Cells were incubated for 1, 4, 8, 24, and 48 h at 37˚C/5% CO2,
unless stated otherwise. As a control, C9 was omitted; thus, cells were
treated with C5b-6 complex (0.2 mg/ml) and C7 (60 mg/ml) and C8 (50
mg/ml) purified complement proteins only. Purified complement com-
ponent proteins referenced above were purchased from Complement
Technology, unless stated otherwise. Normal human serum was pur-
chased from Merck Millipore (S1-100ML), and heat inactivation was
carried out at 56˚C for 1 h.

Inhibition of endocytosis using Dynasore

To block endocytosis of the C5b-9 complex, media was supplemented with
200 mg/ml Dynasore hydrate (Sigma; D7693) for 24 h (unless stated
otherwise) at 37˚C/5% CO2. The next day, cells were washed once with
sterile PBS and fixed for immunofluorescence or electron microscopy.

Immunofluorescence

Cells growing on culture well inserts were washed twice with sterile PBS
and fixed with pure ice-cold methanol (5 min) or 4% paraformaldehyde
(Sigma-Aldrich; 15,812-7) for 30 min at room temperature. Fixation was
stopped by washing the cells thoroughly three times with PBS. Cells
were permeabilized with PBS containing 0.01% Triton X-100 (PBS-T;
Sigma; T-8787) for 15 min. To reduce background staining, the cells
were blocked with 1% BSA (Sigma; A7906) in PBS-T for 1 h at room
temperature. After blocking, the insert membrane was removed using a
scalpel and placed on Parafilm prior to being incubated with a primary Ab
(depending on the protein of interest). All primary Abs were diluted 1:50 in
1% BSA and PBS-T overnight at 4˚C. The next day, cells were washed

three times with PBS to remove unbound primary Ab. Then a secondary
FITC- or TRITC-conjugated Ab was applied at 1:100 dilution for 1 h at
room temperature. When examination of the cytoskeleton (F-actin) was
required, rhodamine phalloidin (1:2000 dilution; Life Technologies; R415)
was added together with the secondary Ab. To stain cell nuclei, DAPI
(Sigma, U.K.) was added (1 mg/ml) 10 min before the removal of the
secondary Ab. Excess secondary Ab was removed with three PBS washes.
Cells were coated with mounting media (Mowiol), and a glass coverslip
was placed on top. The membrane/coverslip were secured on a glass slide
using mounting media for analysis using an inverted Leica SP2 confocal
microscope. To acquire three-dimensional (3D) images of Z-sections, data
were processed using Imaris 3D reconstruction software.

Abs

The primary Abs used were Tim23 mouse monoclonal (BD Transduction
Laboratories; 611222), C5b-9 mouse monoclonal (Dako Cytomation;
M0777), EEA-1 rabbit polyclonal (Santa Cruz; L2211), and cathepsin D
goat polyclonal IgG (R&D Systems; AF1029). CD55 and CD59 Abs were
generously provided by Professor Paul Morgan (University of Cardiff,
Cardiff, U.K.): clone MD1, a rat IgG1 mAb with species cross-reactivity
against mouse, human, and pig, and clone 7A6, a mouse mAb with the
same species cross-reactivity, respectively. The phospho-ERK Ab was
mouse monoclonal E-4 from Santa Cruz (sc-7383), the ERK1/2 Ab was
a rabbit polyclonal (Cell Signaling; 9102), and the heat shock protein
70-kDa chaperone was a mouse monoclonal (Santa Cruz; sc-7298).

Electron microscopy and quantification of mitochondria

To assess whether the basal C5b-9 complex affects mitochondrial in-
tegrity (by measuring mitochondrial number), the following samples were
used: nontreated RPE cells, cells incubated with DMEM + DMSO for
24 h (vehicle), cells incubated with DMEM containing 200 mg/ml dynasore
hydrate (24 h), C5b-8–treated cells (24 h), C5b-9–treated cells (24 h), and
C5b-9–treated cells with 200 mg/ml Dynasore hydrate (24 h). Upon com-
pletion of the treatments, cells growing on culture well inserts were fixed
with 2% w/v paraformaldehyde/2% w/v glutaraldehyde for 2 h before
incubating them in 1.5% w/v osmium tetroxide/1.5% w/v potassium
ferricyanide for 1 h. Cells were dehydrated using increasing concentrations
of ethanol (70, 90, and 100% v/v ethanol), followed by propylene oxide
before embedding in EPON resin. The insert membrane was cut into
70-nm sections using a Leica UC7 ultra-microtome and imaged on a
JEOL 1010 transmission electron microscope. Mitochondria counting in
RPE cells was performed using ImageJ. The number of mitochondria
counted was normalized to the cytoplasmic area/cell, excluding the area
covered by the nucleus.

Results
Transient assembly of C5b-9 on RPE cells

To investigate the effects of C5b-9 on RPE cells, we first estab-
lished an experimental model in which primary porcine RPE cells
were cultured on Transwells, and purified complement proteins
were added to the basal compartment at concentrations corre-
sponding to those found in normal human serum. C5 is synthesized
primarily in the liver, and its concentration in human plasma
(derived from normal donors) ranges from 70 to 170 mg/ml (38–
40). Therefore, to mimic the in vivo concentration of C5 protein
in the circulation, C5b-6 was used at 150 mg/ml. The use of C5b-6
obviated cleavage of C5 protein into C5a and C5b (41). C7 is
mainly produced by the liver and bone marrow, and its concen-
tration varies from 50 to 70 mg/ml in human serum (42, 43). C8 is
composed of three subunits (a, b, and g), and its concentration
in human plasma varies between 50 and 80 mg/ml (44, 45). C9 is
the final component of the C5b-9 complex, and its concentration
in human serum ranges from 40 to 70 mg/ml (42, 46). The com-
plement proteins were added in serum-free medium rather than
whole serum because the presence of growth factors and other
bioactive molecules in serum could obscure the specific effects of
C5b-9. Cultures were fixed and immunostained for C5b-9 and
F-actin, and the full thickness of the monolayer was rendered in
3D by confocal microscopy (Fig. 1A, Supplemental Video 1).
Within 1 h of exposure to the mix of complement proteins, there
was abundant punctate staining for C5b-9 on the basal RPE
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cell surface, but none was detected on the apical surface, dem-
onstrating both the integrity of the monolayer and the absence of
basal-to-apical transcytosis of the intact complex. Quantification
of total cellular C5b-9 staining showed that, by 8 h, the levels of
C5b-9 had decreased by ∼50%; by 24 h, the complex had almost
completely disappeared (Fig. 1B).
In these experiments and elsewhere in this study, we used a

control in which C9 was omitted to demonstrate the specificity of
the C5b-9 Ab (which only recognizes C9 in the complex), as
well as to show that effects on RPE cells were specific to C5b-9.
Thus, if C5b-8 is indicated (Fig. 1B, 1D), this refers to the staining
obtained using the C5b-9 Ab when C9 was not included in the
complement protein mix. We considered three testable hypotheses
to explain the decline in C5b-9 staining. The first was depletion
of complement proteins from the media with concomitant elimi-
nation of C5b-9 by the RPE cells; the second was an acquired
resistance to C5b-9 by the cells (e.g., through upregulation of
negative complement regulators, such as CD59); and the third was
C5b-9 complex formation in solution that could not become cell
associated. To test the first hypothesis, basal media containing the
C5b-9 complement components were conditioned by exposure to
RPE cells for 24 h, and these (or fresh media) were applied to new
monolayers for 1 h. The results show that the 24-h conditioned
media failed to support C5b-9 formation, suggesting that the
complement proteins were indeed depleted from the media under

these experimental conditions (Fig. 1C, 1D). Western blot anal-
ysis failed to reveal any change in the expression of DAF/CD55
or CD59 during the 48-h exposure to C5b-9 (data not shown). To
test the third hypothesis, the complement protein mix was incu-
bated for 24 h prior to addition to the cells, but this did not lead to
any difference in C5b-9 staining compared with adding unmixed
proteins (Supplemental Fig. 1A). This observation does not rule
out the formation of soluble C5b-9 complexes that then become
cell associated by a potential RPE cell–derived complement
activator, although secretion of vitronectin by RPE cells may
counteract such a mechanism (32).

RPE cells eliminate C5b-9 via the endocytic pathway

By using the purified proteins we achieved C5b-9 activation
without the need for any upstream complement activation, a
technique known as reactive lysis (47). However, this approach
can lead to peripheral binding of the C5b-9 complex without
full insertion into the plasma membrane. To address this possi-
bility, we assembled C5b-9 as described earlier and then briefly
exposed the cells to trypsin, because fully inserted or internalized
C5b-9 would be expected to be resistant (Supplemental Fig. 1B).
Although there was a reduction in the amount of C5b-9 staining
in the trypsin-treated samples, this was not significant, and the
confocal images revealed abundant staining of C5b-9 associated
with the cells. Therefore, we sought to determine the mechanism

FIGURE 1. Accumulation and elimination of C5b-9 on the basal RPE cell surface. (A) Porcine RPE cells were cultured on Transwells and incubated for

the periods indicated with DMEM in the apical chamber, as well as with DMEM containing C5b-6, C7, C8, and C9 in the basal chamber. C5b-9 (green), F-

actin (red), and DAPI (blue) were visualized by confocal microscopy in full-thickness Z-stacks, of which the apical and basal cell surfaces are shown. *A

3D view is provided in Supplemental Video 1. (B) Quantitation of C5b-9 staining is presented as the average fluorescence intensity of 12 full-depth fields of

view from three independent experiments. Omission of C9 from the complement protein mix provided the control C5b-8 sample, which was used in this

experiment and elsewhere in this study to demonstrate the specificity of the Ab for C5b-9. (C) RPE cell monolayers were incubated for 1 h as in (A) (left

panel) or with complement-containing medium that had been in contact with RPE cells for 24 h (right panel). Monolayers were processed for imaging as in

(A). (D) RPE cell monolayers were treated as in (A) for 1 and 24 h, after which the basal DMEM containing the complement protein mix was applied to

a new Transwell for 1 h to generate the 1-h postdepletion data. The results show that basal medium taken after 24 h exposure to RPE cells does not support

de novo C5b-9 formation. Data were generated from four separate fields of view from three independent experiments and are expressed as mean 6 SEM.
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responsible for the clearance of C5b-9 by RPE cells. It was
shown that other cell types, such as oligodendrocytes, platelets,
and tumor cells, protect themselves from C5b-9–induced lysis
by membrane vesiculation (48), but the route of C5b-9 elimina-
tion in RPE cells is not known.
To investigate the possible involvement of the endocytic path-

way we used Dynasore, a noncompetitive inhibitor of the GTPase
activity of dynamins I, II, and III that blocks both clathrin- and
caveolae-mediated endocytosis (49, 50). We observed that, in RPE

cells exposed to Dynasore, C5b-9 was almost completely retained
at the cell surface 24 h after incubation with the mix of comple-
ment proteins (Fig. 2A), suggesting that the major mechanism for
removal of C5b-9 from the cell surface is endocytosis. During
our experiments we recorded TEER to monitor the integrity of the
monolayer and observed that C5b-9 elicited a small, but repro-
ducible, increase in TEER that was abolished in the presence of
Dynasore (Fig. 2B). Thus, resting TEER ∼ 150 V/cm2 was in-
creased to .200 V/cm2 in the presence of C5b-9, with no effect
observed with Dynasore alone. Interestingly, elevated TEER
upon exposure to C5b-9 was sustained up to 24 h, by which time
C5b-9 is almost completely absent from the basal RPE cell surface
(Fig. 1B). These results suggest that the dynamin-dependent in-
tracellular trafficking, and not the presence of C5b-9 on the cell
surface per se, drives the change in TEER. The reasons for this
are not clear, and examination of certain major junctional pro-
teins, such as claudin-19 and ZO-1, did not reveal any changes in
immunolocalization that might explain this observation (results
not shown). However, we observed transient activation of ERK1/2
in response to C5b-9, consistent with previous investigations in
RPE cells (33), which was reduced in the presence of Dynasore
and occurred with similar kinetics to the initial increase in TEER
(Fig. 2C).

Intracellular trafficking of C5b-9 in RPE cells

Retention of C5b-9 at the basal cell surface following Dynasore
treatment suggested that, under normal conditions, the majority of
C5b-9 is removed from the surface of RPE cells via endocytosis.
To further investigate the postendocytic fate of C5b-9 from the
basal RPE cell surface, we immunostained monolayers for C5b-9
and the early endosomal marker EEA1. We observed that C5b-9
staining appeared as irregular-shaped puncta and that many of
the C5b-9+ structures colocalized with EEA1 (Fig. 3A). When we
performed the same experiment using whole human serum in-
stead of purified complement proteins, we also observed coloc-
alization of C5b-9 with EEA1, but with clustering of the early
endosomes presumably induced by other serum factors (Supple-
mental Fig. 2). The extensive colocalization of C5b-9 with
EEA1 after 4 h of incubation, coupled with reduced cell-associ-
ated C5b-9 after 8 h of incubation, suggests that the endocytosed
complex might be delivered to the lysosome for degradation.
However, after 4 and 8 h of incubation with C5b-9 in control
conditions, there was only occasional colocalization of C5b-9 with
the lysosomal hydrolase cathepsin D (Fig. 3B). EGF-stimulated
EGFR, which is also endocytosed into EEA1+ early endosomes
and then delivered to the lysosome for degradation, shows little
costaining with lysosomal markers unless the cells are incubated
with lysosomal enzyme inhibitors to prevent receptor degradation
(51). To determine whether the low incidence of colocalization of
C5b-9 was also due to rapid degradation of the Ab epitope on
lysosomal delivery, we tested the effects of incubation with
a combination of the protease inhibitors pepstatin A and leupeptin
on colocalization of endocytosed C5b-9 with cathepsin D. Under
these conditions, from 4 to 8 h, we observed a significant increase
in the number of lysosomes that were positive for C5b-9, con-
sistent with an accumulation of C5b-9 in the lysosomal compart-
ment in the presence of the protease inhibitors (Fig. 3C, 3D). Taken
together, these observations demonstrate that RPE cells elimi-
nate C5b-9 via the endocytic pathway and lysosomal degradation.

Retention of C5b-9 at the cell surface leads to mitochondrial
abnormalities

Having demonstrated that C5b-9 is normally removed from the
basal RPE cells via the endocytic pathway with no apparent adverse

FIGURE 2. Endocytosis is required for the elimination of surface-as-

sociated C5b-9. (A) RPE cell monolayers were cultured on Transwells

for 24 h in the presence or absence of 200 mM Dynasore, with DMEM

containing the complement protein mix in the basal chamber. Cells were

processed for imaging as in Fig. 1A. Quantitative analysis shows the

expected accumulation of C5b-9 at 4 h and subsequent decline at 24 h.

However, in the presence of Dynasore, the level of C5b-9 staining at 24 h

was significantly higher and had not decreased significantly from the

value at 4 h. (B) To assess the integrity of the monolayer during pro-

longed exposure to C5b-9 and Dynasore, TEER was measured during the

24-h experimental period. C5b-9 elicited a small, but significant, in-

crease in TEER during this period that was abolished in the presence of

Dynasore. Dynasore alone had no effect on TEER. Data are expressed as

mean 6 SEM [n = 12 fields of view from three independent experiments

(A) or 12 wells/condition (B)]. (C) To examine ERK1/2 activation, RPE

cells were incubated with 200 mg/ml of Dynasore alone, C5b-9 alone, or

the two in combination. Cells were extracted at the times indicated, and

whole-cell lysates were analyzed by SDS-PAGE and Western blotting

using Abs against p-ERK1/2, total ERK1/2, and heat shock protein 70-

kDa chaperone as the loading control. Protein bands were visualized by

ECL. ***p , 0.001.
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effects on the cells, we then asked how the cells would respond if
this process was perturbed. Because mitochondrial dysfunction
may contribute to loss of RPE cell viability in AMD (36, 52), we
evaluated the expression of mitochondrial markers in cells ex-

posed to Dynasore and C5b-9 for 24 h. Immunofluorescence
analysis revealed that blocking the endocytosis of C5b-9 led to
a significant reduction in staining intensity of the mitochondrial
membrane protein Tim23 (Fig. 4A, 4B) that was not observed
in cells treated with Dynasore alone, C5b-8, or C5b-9. Similar
observations were obtained using cells loaded with MitoTracker
(Supplemental Fig. 3). However, Western blotting of whole-cell
lysates revealed that, despite the loss of mitochondrial staining,
total cellular levels of both Tim23 and cytochrome C were un-
changed (Fig. 4C), showing that the apparent loss of Tim23
staining was due to failure to concentrate the protein in mito-
chondria, rather than a reduction in gene expression. We then
used electron microscopy to examine mitochondrial ultrastruc-
ture; consistent with the results in Fig. 4, we observed that
there were significantly fewer mitochondria in RPE cells treated
with Dynasore and C5b-9 than in cells treated with C5b-9, C5b-8,
vehicle, or Dynasore alone (Fig. 5, Supplemental Fig. 4). Fur-
thermore, the mitochondria in the cells treated with Dynasore
and C5b-9 tended to be smaller, rounder, and had fewer discern-
able cristae. These observations suggest that if C5b-9 persists at
the cell surface, it may lead to changes both in mitochondrial
morphogenesis and the recruitment and targeting of mitochondrial
proteins that would be expected to have deleterious consequences
on aspects of RPE cell function, such as energy production and
Ca2+ handling.

FIGURE 3. Clearance of C5b-9 via the endocytic pathway. (A) RPE cell

monolayers were cultured on Transwells for 4 h in the presence of DMEM

containing the complement protein mix and then fixed and immunostained

for C5b-9 (green), the early endosomal marker EEA1 (red), and nuclei

(DAPI; blue). The representative images show puncta of C5b-9 (white

arrows), many of which colocalize with EEA1. (B) Cells were treated as

above for 8 h and then fixed and immunostained for C5b-9 (green) and the

lysosomal marker cathepsin D (red). Under control conditions (-PL) we

observed little colocalization of the two markers. (C) Using the same con-

ditions as in (B) but maintaining the cells in the presence of pepstatin

A and leupeptin (+PL), we observed partial colocalization of C5b-9 (white

arrows) with cathepsin D, consistent with its trafficking to the lysosome.

Note that the variability in DAPI staining is due to the position of the

confocal slice relative to the nucleus. (D) Bar graph shows the relative

proportion of C5b-9 staining that colocalized with cathepsin D at 4 and

8 h, in the presence and absence of pepstatin A and leupeptin. The num-

bers were calculated by counting the yellow pixels (corresponding to

C5b-9 and cathepsin D colocalization) and dividing these values by the

number of yellow plus green (C5b-9) pixels. Data are expressed as

mean 6 SEM (n = 5 images/experiment from three independent experi-

ments). In the presence of the protease inhibitors there was a significant

(**p , 0.05) increase in the colocalization of C5b-9 and cathepsin D

from 4 to 8 h and likewise when comparing the control sample at 8 h

with the cells treated with the inhibitors (***p , 0.001).

FIGURE 4. Persistent exposure to C5b-9 leads to mitochondrial per-

turbation. (A) RPE cells were cultured on Transwells for 24 h and exposed

to a variety of experimental conditions, as indicated in the figure. Cells

were fixed and immunostained for the mitochondrial marker Tim23

(green) and DAPI (blue). (B) Data are expressed as mean 6 SEM (n = 4

images/experiment from three independent experiments). Quantitative

analysis of Tim23 staining revealed a significant reduction (***p , 0.001)

in staining intensity in cells treated with C5b-9 and Dynasore versus

C5b-9 or Dynasore alone. (C) Whole-cell lysates were prepared from RPE

cells cultured under the same set of conditions as above for the times in-

dicated and Western blotted for Tim23, cytochrome C (CytC), and GAPDH

as a control. No discernable difference was noted in the band intensities for

either mitochondrial protein, under any of the different conditions.
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Discussion
RPE cells form the posterior blood–retinal barrier in the eye,
where, in association with the underlying Bruch’s membrane, it
comes into direct contact with the systemic pool of circulating
complement proteins. Numerous reports showed that, in AMD,
individual complement proteins, as well as the C5b-9 complex,
become enriched in drusen and in the basal RPE cell/Bruch’s
membrane, and experimental models using cultured RPE cells
demonstrated that C5b-9 has the potential to modulate RPE cell
function. However, it is also clear that RPE cells, like many other
cells, have molecular mechanisms and regulatory proteins that
enable them to largely evade the potentially harmful effects of
complement activation. The complement regulators include cell
surface proteins, such as CD59, although our observation that
C5b-9 forms readily on RPE cells in the absence of CD59
blocking Abs, suggests that the level of expression of CD59 is
insufficient to regulate C5b-9 formation in this experimental
model. In AMD, it was reported that levels of complement reg-
ulators, such as CD59, are reduced in disease-affected areas (53),
which would be expected to render the RPE cells vulnerable to
attack by C5b-9. In this study, we sought to elucidate the mech-
anism(s) used by RPE cells to eliminate C5b-9, because deficits in
this process may contribute to the RPE cell dysfunction associ-
ated with AMD pathogenesis. First, we established a cell culture
model for C5b-9 assembly that used primary RPE cells in con-
fluent monolayers on culture well inserts. In all studies we verified
the integrity of the monolayers by measuring TEER, and we aimed
to conserve RPE cell properties by restricting the cells to only
a few rounds of division prior to experimentation. Using purified
complement proteins in serum-free media, we observed that C5b-9
formed rapidly on the basal RPE cell surface, as judged by im-
munofluorescence analysis, which was cleared over 24–48 h with
no apparent detrimental effects to the cells. A number of studies
reported that nucleated cells use various strategies to eliminate
surface-associated C5b-9, including endocytosis, ectocytosis, and
exocytosis (54–56), each of which may be used in a cell type–
specific manner, and all have been postulated as possible mecha-
nisms for C5b-9 removal in RPE cells (57). However, no previous
studies directly addressed this question in RPE cells, and those
studies that reported that C5b-9 is removed by endocytosis did not

show whether the fate of the internalized complex is lysosomal
degradation. In this study, we observed that the dynamin in-
hibitor Dynasore completely blocked the removal of C5b-9 from
the basal RPE cell surface. These results suggest that, in RPE
cells, C5b-9 may be processed in a similar manner to that re-
ported in K562 erythroleukemia cells, where C5b-9 was shown
to colocalize with caveolin-1, and internalization was dependent
on dynamin-2 (56).
One striking and highly reproducible finding was that the C5b-9

complex increases TEER in RPE cells. Little is known about
the relationship between exposure to C5b-9 and RPE cell barrier
function; however, two studies reported no change in TEER upon
formation of sublytic C5b-9 on RPE cells (58, 59), whereas an-
other reported a decrease in TEER, although this required addi-
tional oxidative stress (33). These contrasting observations are
probably due to the use of different experimental models, because
both previous studies used ARPE19 cells, and C5b-9 assembly
was performed at the apical cell surface using whole serum as a
source of complement proteins. Moreover, in the latter study, the
loss of TEER was shown to be a secondary effect, due to an in-
crease in expression and secretion of vascular endothelial
growth factor. The increase in TEER observed in this study is
somewhat unexpected because pathogenic stimuli are normally
associated with a decrease in barrier function. However, sublytic
C5b-9 was shown to activate ERK1 and RhoA in various cell
types (60, 61), consistent with our observation of ERK1/2 ac-
tivation by C5b-9 in this study, and RhoA activation was shown
to tighten epithelial junctions in kidney epithelial cells (62). We
also observed that TEER was elevated when C5b-9 was assem-
bled on the apical RPE cell surface (data not shown), further
supporting the idea that intracellular trafficking of the complex
appears to stimulate the increase in TEER rather than its presence
at the cell surface.
The ability of normal healthy RPE cells to withstand the

potentially harmful effects of exposure to C5b-9 is consistent
with observations in other nucleated cell types; however, in AMD,
chronic exposure to C5b-9 may be linked to oxidative stress and
inflammatory RPE cell responses. We asked whether inhibiting
the internalization and degradation of C5b-9 by blocking the endo-
cytic pathway would specifically elicit effects on mitochondria, be-

FIGURE 5. Ultrastructural defects

in mitochondria exposed to persistent

C5b-9. The images show representa-

tive transmission electron micrographs

of RPE cells that were cultured in

Transwells in the presence of C5b-8

(control), C5b-9, and C5b-9+Dyna-

sore for 24 h. Mitochondria are high-

lighted by arrows. The images show

that, in the presence of C5b-9+Dyna-

sore, mitochondria are smaller and

rounder than in the other conditions.

The bar graph shows a quantitative

enumeration of mitochondria number

as a function of area, with cells treated

with C5b-9+Dynasore exhibiting sig-

nificantly fewer mitochondria than

cells treated with C5b-9 alone. Data

are expressed as mean 6 SEM (n = 5

images/experiment from three inde-

pendent experiments). **p , 0.05.

Me, melanosome.
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cause mitochondrial dysfunction is closely associated with oxi-
dative stress. Using immunofluorescence analysis of MitoTracker
and Tim23, together with electron microscopy to obtain ultrastruc-
tural information, we observed a reduction in the number and size of
mitochondria, damage to cristae, and the loss of internal mito-
chondrial membranes. Despite these alterations the RPE cells
remained viable, with maintenance of TEER and no evidence of
apoptosis, as judged by TUNEL staining (data not shown). Similar
changes in mitochondrial morphology were reported in skeletal
muscle from mice lacking p53, in which a marked reduction in
Tim23 delivery to mitochondria was also observed (63), as well as
in RPE cells from AMD patients (64). Interestingly, proteomic
analysis of human RPE cells isolated from AMD patients revealed
that aged RPE cells were characterized by alterations in their
mitochondrial protein content compared with control samples
(65). Mitochondrial rounding is more commonly associated with
failures in cellular Ca2+ handling, as reported in models of
amyotrophic lateral sclerosis (66) and endothelial cells (67). The
link with Ca2+ signaling may be particularly relevant given that, in
cultured RPE cells, C5b-9 was shown to elicit a transient increase
in Ca2+ that, under certain conditions, can lead to cell death (27,
28, 33, 68).
In summary, we showed that RPE cells dispose of surface-bound

C5b-9 via the endocytic pathway and lysosomal degradation and
that this is important because failure to eliminate C5b-9 leads to
changes in mitochondrial morphology that could compromise
cellular activities. In aging, it was shown that lysosomal capacity
in the RPE cells decreases, possibly due to the accumulation of
lipofuscin. Thus, blue light irradiation of lipofuscin-loaded hu-
man RPE cells and ARPE-19 cells was shown to cause photo-
oxidative damage, lysosomal membrane permeabilization, and
leakage of lysosomal enzymes into the cytosol (69). This cellular
response induced NLRP3 inflammasome activation via upregula-
tion of caspase-1, IL-1b, and IL-18. NLRP3 was suggested to
have the capacity to impair both autophagy (removal of damaged
organelles and proteins) and photoreceptor outer segment phago-
cytosis in RPE cells (70, 71). In addition, lipofuscin accumulation
can impair autophagy (which can overlap with the endocytic
pathway) by preventing lysosomal enzymes from degrading func-
tional lysosomes (72, 73). Advanced accumulation of the nonde-
gradable lipofuscin in the lysosomes eventually compromises the
lysosomal system and, therefore, increase cellular levels of reac-
tive oxygen species in RPE cells (74). Our observations raise the
possibility that, in AMD, elevated levels of lipofuscin could im-
pede the processing and degradation of C5b-9, creating a vicious
cycle that, in turn, renders RPE cells more susceptible to com-
plement attack.
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