36,153 research outputs found
Bending modes, elastic constants and mechanical stability of graphitic systems
The thermodynamic and mechanical properties of graphitic systems are strongly
dependent on the shear elastic constant C44. Using state-of-the-art density
functional calculations, we provide the first complete determination of their
elastic constants and exfoliation energies. We show that stacking
misorientations lead to a severe lowering of C44 of at least one order of
magnitude. The lower exfoliation energy and the lower C44 (more bending modes)
suggest that flakes with random stacking should be easier to exfoliate than the
ones with perfect or rhombohedral stacking. We also predict ultralow friction
behaviour in turbostratic graphitic systems.Comment: 7 pages, 6 figure
Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6
We have investigated the elastic properties of the cubic dense Kondo compound
Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic
fields vs temperatures (H-T) phase diagrams under magnetic fields along the
crystallographic [001], [110] and [111] axes. An ordered phase IV showing the
elastic softening of c44 locates in low temperature region between 1.6 and 1.1
K below 0.7 T in all field directions. The phase IV shows an isotropic nature
with regard to the field directions, while the antiferro-magnetic phase III
shows an anisotropic character. A remarkable softening of c44 and a spontaneous
trigonal distortion εyz+εzx+εxy recently reported by Akatsu et
al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole
(FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.Comment: 9 figures, Strongly Correlated Electron
Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems
While the Born elastic stability criteria are well-known for cubic crystals,
there is some confusion in the literature about the form it should take for
lower symmetry crystal classes. We present here closed form necessary and
sufficient conditions for elastic stability in all crystal classes, as a
concise and pedagogical reference to stability criteria in non-cubic materials
A Seismic Inversion Problem for an Anisotropic, Inhomogeneous Medium
In this report, we consider the propagation of seismic waves through a medium that can be subdivided into of two distinct parts. The upper part is assumed to be azimuthally symmetric, linearly nonuniform with increasing depth, and the velocity dependence with direction consistent with elliptical anisotropy. The lower part, which is the layer of interest, is assumed to also be azimuthally symmetric, but uniform and nonelliptically anisotropic. Despite nonellipticity, we assume the angular dependence of the velocity can be described by a convex curve.
Our goal is to produce a single source-single receiver model which uses modern seismic measurements to determine the elastic moduli of the lower media. Once known, geoscientists could better describe the angular dependence of the velocity in the layer of interest and also would have some clues at to the actual material composing it
Dichloridobis(di-tert-butylmethylphosphine oxide-[kappa]O)diphenyltin(IV)
The complete molecule of the title compound, [Sn(C6H5)2Cl2(C9H21OP)2], is generated by crystallographic inversion symmetry, the Sn atom is located on a special position of site symmetry \overline{1}. The Sn atom adopts an all-trans SnC2O2Cl2 octahedral geometry. As a consequence of the bulky substituents at the O atom, the P-O-Sn bond angle is 163.9 (3)°. Key indicators: single-crystal X-ray study; T = 173 K; mean σ(C–C) = 0.012 Å; R factor = 0.058; wR factor = 0.099; data-to-parameter ratio = 18.6
Remarks on explicit strong ellipticity conditions for anisotropic or pre-stressed incompressible solids
We present a set of explicit conditions, involving the components of the elastic stiffness tensor, which are necessary and sufficient to ensure the strong ellipticity of an orthorhombic incompressible medium. The derivation is based on the procedure developed by Zee & Sternberg (Arch. Rat. Mech. Anal., 83, 53-90 (1983)) and, consequently, is also applicable to the case of the homogeneously pre-stressed incompressible isotropic solids. This allows us to reformulate the results by Zee & Sternberg in terms of components of the incremental stiffness tensor. In addition, the resulting conditions are specialized to higher symmetry classes and compared with strong ellipticity conditions for plane strain, commonly used in the literature.The first author’s work and the second author’s visit to Brunel University were partly supported by
Brunel University’s ‘BRIEF’ award scheme
Structure, energetics, and mechanical stability of Fe-Cu bcc alloys from first-principles calculations
Atomic volumes, magnetic moments, mixing energies, and the elastic properties of bcc Fe1–xCux solid solutions are studied by ab initio calculations based on the cluster expansion framework. For the calculation of concentration-dependent elastic moduli in disordered solid solutions, we introduce a generalization of the cluster expansion technique that is designed to handle tensorial quantities in high-symmetry phases. Calculated mixing energies, atomic volumes, and magnetic moments are found to be in good agreement with available measurements for metastable alloys prepared through nonequilibrium processing techniques. Additionally, the predicted variations of the bulk modulus and shear moduli C44 and C[prime] with respect to copper concentration are calculated for the disordered bcc phase. While the bulk modulus and C44 are positive for all concentrations, C[prime] is predicted to be positive only for Cu concentration less than 50 atomic %, and negative otherwise. Our results thus indicate that the mechanical instability of bcc Cu persists over a wide range of compositions. The implications of the present results are discussed in relation to the observed metastability of bcc Fe-Cu alloys, and the strengthening mechanism of nanoscale bcc precipitates in an alpha-Fe matrix
Observation of elastic anomalies driven by coexisting dynamical spin Jahn-Teller effect and dynamical molecular spin state in paramagnetic phase of the frustrated MgCrO$
Ultrasound velocity measurements of magnesium chromite spinel MgCrO
reveal elastic anomalies in the paramagnetic phase that are characterized as
due to geometrical frustration. The temperature dependence of the tetragonal
shear modulus exhibits huge Curie-type softening, which
should be the precursor to spin Jahn-Teller distortion in the antiferromagnetic
phase. The trigonal shear modulus exhibits nonmonotonic temperature
dependence with a characteristic minimum at 50 K, indicating a coupling
of the lattice to dynamical molecular spin state. These results strongly
suggest the coexistence of dynamical spin Jahn-Teller effect and dynamical
molecular spin state in the paramagnetic phase, which is compatible with the
coexistence of magnetostructural order and dynamical molecular spin state in
the antiferromagnetic phase.Comment: 6 pages, 3 figure
Discrete models of dislocations and their motion in cubic crystals
A discrete model describing defects in crystal lattices and having the
standard linear anisotropic elasticity as its continuum limit is proposed. The
main ingredients entering the model are the elastic stiffness constants of the
material and a dimensionless periodic function that restores the translation
invariance of the crystal and influences the Peierls stress. Explicit
expressions are given for crystals with cubic symmetry: sc, fcc and bcc.
Numerical simulations of this model with conservative or damped dynamics
illustrate static and moving edge and screw dislocations and describe their
cores and profiles. Dislocation loops and dipoles are also numerically
observed. Cracks can be created and propagated by applying a sufficient load to
a dipole formed by two edge dislocations.Comment: 23 pages, 15 figures, to appear in Phys. Rev.
- …
