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Summary

We present a set of explicit conditions, involving the components of the elastic stiffness
tensor, which are necessary and sufficient to ensure the strong ellipticity of an orthorhombic
incompressible medium. The derivation is based on the procedure developed by Zee and Sternberg
(Arch. Rat. Mech. Anal. 83 (1983)) and, consequently, is also applicable to the case of the
homogeneously pre-stressed incompressible isotropic solids. This allows us to reformulate the
results by Zee and Sternberg in terms of components of the incremental stiffness tensor. In addition,
the resulting conditions are specialised to higher symmetry classes and compared with strong
ellipticity conditions for plane strain, commonly used in the literature.

1. Introduction

Components Cijkl of the elasticity tensor of every anisotropic solid possess a number of symmetries
(for example, in the linearly elastic case Cijkl = Cklij = Cijlk , i, j, k, l = 1, 2, 3). In addition, the
tensor C may possess the symmetries necessary to confirm to the appropriate symmetry class of the
material. The remaining non-zero components are also not completely arbitrary and must, in fact,
satisfy certain conditions ensuring the physicality of the material response. Certainly, the definition
of what ‘physicality’means exactly tends to be imprecise, especially in the case of constrained media
and/or finite deformations, see the discussion in (1, Chapter 3). However, certain types of conditions
proved useful in applications; the strong ellipticity is one such condition.

A practical motivation to study constitutive inequalities, such as the strong ellipticity conditions,
is provided by the modern advances in the design and fabrication of composites, in particular,
micro- and nano-structured materials. These materials often behave as anisotropic elastic solids at
the macro-scale. Due to the man-made nature of such solids, the implication is that it is now possible
to design and fabricate anisotropic materials with the prescribed sets of material parameters. With
this in mind, it is important to develop a better understanding of the theoretical limits on anisotropic
parameters.
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2 A. V. PICHUGIN AND D. A. PRIKAZCHIKOV

For linearly elastic anisotropic solids the strong ellipticity condition may be formally introduced
as the requirement that

Cijklaibjakbl > 0 (1.1)

for any real vectors a and b (2, p. 56). Here and henceforth we assume summation over repeated
indices unless otherwise stated. The condition (1.1) is not explicit, because it must be enforced for
arbitrary a and b. Nevertheless, when the tensor C belongs to sufficiently high symmetry class, it
is often possible to formulate explicit necessary and sufficient conditions for components of C that
are equivalent to (1.1). For example, the strong ellipticity of a linear elastic isotropic material is
equivalent to the following inequalities

μ > 0 and (ν < 1/2 or ν > 1) , (1.2)

within which μ is the shear modulus and ν the Poisson ratio (3, Sect. 51). Explicit strong ellipticity
conditions are also known for transversely isotropic elastic solids (4–6) and orthorhombic elastic
solids (7).Asemi-numerical procedure that verifies the strong ellipticity of a general linear anisotropic
solid has been described recently, see (8). In addition, explicit strong ellipticity conditions are
known for finitely deformed isotropic elastic solids (9–11). Applications to the stability analysis
of constrained and unconstrained fibre-reinforced media are discussed in (12, 13).

Inequalities (1.2) are weak. They do not guarantee the positive definiteness of the strain energy
density, which in linear isotropic case is equivalent to the familiar pair of inequalities

μ > 0 and − 1 < ν < 1/2 . (1.3)

Nevertheless, inequalities (1.2) are still useful, because they ensure global stability in the sense of
Hadamard, see (1, Sect. III.8.B). A good example of the situation where this distinction matters is
provided by papers (14, 15), whose authors recognised that one can create composite materials with
extreme effective properties by using inclusions that are strongly elliptic, but do not necessarily have
a positive definite strain energy density.

The introduction of a kinematic constraint, such as the incompressibility, makes it harder to define
conditions that ensure a plausible material response. For example, condition (1.1) is, essentially, the
requirement of a positive definiteness of the acoustic tensor Qik ≡ Cijklnjnl, where unit vector n
is the wave normal. However, the acoustic tensor of an incompressible linearly elastic material is
at best positive semi-definite (16). Fortunately, one can show that condition (1.1) is equivalent to
saying that squares of body wave speeds (that is, the eigen-values of the acoustic tensor) must all
be real and positive. This makes it possible to formulate a weaker version of the strong ellipticity
condition for incompressible materials, which only ensures that the squares of body wave speeds are
real and positive, see (17). Conditions of this kind for incompressible linear isotropic solids are trivial
(they simply give μ > 0). A highly non-trivial generalisation of these conditions to the incremental
elasticity of a homogeneously pre-stressed isotropic media is described in (18). Unfortunately, the
explicit strong ellipticity conditions given in (18) are obtained in terms of the derivatives of the strain
energy function, which is not always the most convenient representation.

The main goal of the present article is to obtain a set of explicit strong ellipticity conditions
for incompressible materials in terms of components of the stiffness tensor C. This is achieved
in two steps. During the first step, we derive the explicit necessary and sufficient conditions
for the strong ellipticity of the incompressible linearly elastic orthorhombic solids. The obtained
conditions complement strong ellipticity conditions for unconstrained orthorhombic solids derived
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in (7). During the second step, we generalise our procedure for the incremental stiffness tensor of
a homogeneously pre-stressed isotropic medium. Although the acoustic tensor considered at the
second step is more general than the one considered at the first step (3, Sect. 68), the generalisation
turns out to be simple due to a hidden symmetry of the tensor of incremental stiffnesses.

In addition, we compare the newly derived three-dimensional strong ellipticity conditions for
orthorhombic linear elastic media with their two-dimensional counterparts that are commonly used
when solving plane strain problems. The simplifications occurring when one deals with higher
elastic symmetries are also analysed. In addition, we make comparisons between the obtained strong
ellipticity conditions and the conditions that ensure the positive definiteness of the strain energy
density.

2. Strong ellipticity conditions for incompressible orthorhombic solids

Equations that govern the motion of a linearly elastic body subjected to the incompressibility
constraint are given by

σij,j = ρüi , ui,i = 0 , i, j ∈ {1, 2, 3} , (2.1)

where ρ stands for the material density, and ui and σij are the components of displacement and
Cauchy stress, respectively. We use overdots to denote differentiation with respect to time, and
comma suffices to denote differentiation with respect to implied spatial coordinate. The constitutive
relations for an incompressible orthorhombic solid may be written using the contracted (Voigt)
notation for the components of the stiffness tensor (2, p. 35), yielding

σ11 = c11ε11 + c12ε22 + c13ε33 − p , σ12 = 2c66ε12 ,

σ22 = c12ε11 + c22ε22 + c23ε33 − p , σ13 = 2c55ε13 ,

σ33 = c13ε11 + c23ε22 + c33ε33 − p , σ23 = 2c44ε23 ,

(2.2)

in which εij ≡ 1
2 (ui,j + uj,i), i, j = 1, 2, 3, are components of the strain tensor. Scalar p is pressure,

a Lagrange multiplier necessary to accommodate the incompressibility constraint. The plane waves
propagating in such media may be sought in the form

u = Af (x · n − vt)e , p = Asf ′(x · n − vt) , (2.3)

where A is the wave amplitude, n the unit vector along the direction of propagation, e the unit vector
along the polarisation direction, v the wave speed and s to be determined. If equations (2.2) and (2.3)
are inserted into governing equation (2.1), one obtains

Qikek − sni = ρv2ei , eini = 0 , (2.4)

with tensor Q = (Qik) usually referred to as the acoustic tensor. In the case of orthorhombic media,
the acoustic tensor may be written in the following form

Q =

⎛
⎜⎜⎝

c11n2
1+c66n2

2+c55n2
3

1
2 (c11+c22−2β3) n1n2

1
2 (c11+c33−2β2) n1n3

1
2 (c11+c22−2β3) n1n2 c66n2

1+c22n2
2+c44n2

3
1
2 (c22+c33−2β1) n2n3

1
2 (c11+c33−2β2) n1n3

1
2 (c22+c33−2β1) n2n3 c55n2

1+c44n2
2+c33n2

3

⎞
⎟⎟⎠ , (2.5)

 at B
runel U

niversity on D
ecem

ber 4, 2015
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/


[15:10 26/11/2015 hbv017.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 4 1–15

4 A. V. PICHUGIN AND D. A. PRIKAZCHIKOV

within which we introduced the shorthand notation

2β1 = c22 + c33 − 2(c23 + c44) , 2β2 = c11 + c33 − 2(c13 + c55) ,

2β3 = c11 + c22 − 2(c12 + c66) ,
(2.6)

that will prove convenient in subsequent analysis. Equations (2.4) can be manipulated to establish
that s = n · (Qe), which allows one to re-write propagation condition (2.4)1 as

(
PQ − ρv2I

)
e = 0 , (2.7)

where P ≡ I − n ⊗ n is a symmetric tensor.
The strong ellipticity conditions may be defined as the requirement that the squares of body wave

speeds must be real and positive for all directions of propagation. In unconstrained materials, this
requirement is equivalent to the positive definiteness of the acoustic tensor Q. For incompressible
materials this is not true, because det P = 0, so that det PQ = 0 and one of the squared wave speeds
given by propagation condition (2.7) is always zero. The requirement that squares of two remaining
wave speeds are real and positive is formulated by noting that (2.7) is equivalent to the quadratic
equation in ρv2:

2ρ2v4 − 2 tr(PQ)ρv2 + (tr PQ)2 − tr(PQ)2 = 0 , (2.8)

see (19). Inspection of (2.8) leads to the conclusion that the strong ellipticity conditions for
incompressible materials must have the form

tr PQ > 0 , (tr PQ)2 − tr(PQ)2 > 0 . (2.9)

When expressions for the components of the tensors Q and P, specified in (2.5) and immediately
below (2.7), respectively, are inserted into inequalities (2.9), one arrives at

(c55 + c66) n4
1 + (c44 + c55 + 2β3) n2

1n2
2 + (c44 + c66) n4

2

+ (c44 + c66 + 2β2) n2
1n2

3 + (c55 + c66 + 2β1) n2
2n2

3 + (c44 + c55) n4
3 > 0

(2.10)

and

c55c66n6
1 + (c44c55 + 2β1c66) n4

2n2
3 + (c44c66 + 2β1c55) n2

2n4
3+

+c44c66n6
2 + (c44c55 + 2β2c66) n4

1n2
3 + (c55c66 + 2β2c44) n2

1n4
3+

+c44c55n6
3 + (c44c66 + 2β3c55) n4

1n2
2 + (c55c66 + 2β3c44) n2

1n4
2+

+
(

c2
44 + c2

55 + c2
66 − (β1 + β2 − β3)

2 + 4β1β2

)
n2

1n2
2n2

3 > 0 .

(2.11)

The strong ellipticity conditions (2.10), (2.11) are still implicit in the sense that they involve
components of the propagation vector n. Our goal now is to formulate conditions on material
parameters occurring in (2.10), (2.11) such that they will ensure strong ellipticity along an arbitrary
propagation direction n.
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2.1 Necessary and sufficient conditions for coordinate planes

First, we consider waves that propagate along coordinate axes. Since two components of
the corresponding wave vectors n are equal to zero, the substitution of these directions into
conditions (2.10) and (2.11) yields

c44+c55 > 0 , c44+c66 > 0 , c55+c66 > 0 ,

c44c55 > 0, c44c66 > 0 , c55c66 > 0 ,

which are equivalent to the following three explicit inequalities

c44 > 0 , c55 > 0 , c66 > 0 . (2.12)

It is worth pointing out that these conditions are the necessary and sufficient strong ellipticity
conditions for waves propagating along the coordinate axes.

Second, we consider waves that propagate in coordinate planes and have wave vectors with one
zero component. For example, vectors n = (n1, n2, 0), where n2

1 + n2
2 = 1, describe the propagation

in the plane Ox1x2. In this case condition (2.11) assumes the simplified form

c55c66n6
1 + (c44c66 + 2β3c55) n4

1n2
2 + (c55c66 + 2β3c44) n2

1n4
2 + c44c66n6

2 > 0 , (2.13)

which can be made explicit by invoking a lemma proved by Zee and Sternberg (18). The latter states
that the inequalities

ax3 + bx2y + cxy2 + dy3 > 0 , where a > 0 , d > 0 , (2.14)

are satisfied for all x � 0, y � 0, such that x + y = 1, iff

either 27a2d2 + 4c3a + 4b3d − b2c2 − 18abcd > 0 , or (b > 0 and c > 0) . (2.15)

When specialised to our case, the lemma states that inequality (2.13) is equivalent to

either 4
(

c2
66 − β2

3

) (
c66(c2

44 + c2
55) − 2c44c55β3

)2
> 0 ,

or (c44c66 + 2c55β3 > 0 and c55c66 + 2c44β3 > 0) .
(2.16)

Astraightforward analysis, supplemented by the use of already established conditions (2.12), reduces
inequalities (2.16) to

either |β3| < c66 , or

(
β3 > −c44

c55

c66

2
and β3 > −c55

c44

c66

2

)
. (2.17)

Altogether, this means that
β3 > −c66 . (2.18)

Similar considerations applied to the coordinate planes Ox1x3 and Ox2x3 lead to the additional
conditions

β2 > −c55 , β1 > −c44 . (2.19)
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In our forthcoming derivations it will be convenient to use additional material constants

ν1 = β1 + c44 , ν2 = β2 + c55 , ν3 = β3 + c66 , (2.20)

which allow us to re-write inequalities (2.18) and (2.19) as

νi > 0 , i ∈ {1, 2, 3} . (2.21)

Effectively, we just proved that, when the direction of propagation is confined to coordinate
planes, condition (2.11) is equivalent to inequalities (2.18), (2.19). In fact, inequalities (2.12) used
in conjunction with inequalities (2.18), (2.19) are also sufficient to satisfy condition (2.10) for an
arbitrary direction of propagation. Indeed,

(c55 + c66) n4
1 + (c44 + c55 + 2β3) n2

1n2
2 + (c44 + c66) n4

2

+ (c44 + c66 + 2β2) n2
1n2

3 + (c55 + c66 + 2β1) n2
2n2

3 + (c44 + c55) n4
3

> (c55 + c66) n4
1 + (c44 + c55 − 2c66) n2

1n2
2 + (c44 + c66) n4

2

+ (c44 + c66 − 2c55) n2
1n2

3 + (c55 + c66 − 2c44) n2
2n2

3 + (c44 + c55) n4
3

=
[
n2

1(n2
2 + n2

3) + (n2
2 − n2

3)2
]

c44 +
[
n2

2(n2
1 + n2

3) + (n2
1 − n2

3)2
]

c55

+
[
n2

3(n2
1 + n2

2) + (n2
1 − n2

2)2
]

c66 > 0 .

(2.22)

This means that condition (2.10) does not need to be considered any more.
To conclude this subsection, we remark that, as long as one of the components of vector n is equal

to zero, the explicit inequalities (2.12), (2.18) and (2.19) are both necessary and sufficient to satisfy
implicit strong ellipticity conditions (2.10) and (2.11). Consequently, these inequalities ensure the
strong ellipticity in plane strain problems. In particular, the inequalities (2.18) and (2.12)3 were
previously obtained as the strong ellipticity conditions in a plane strain problem for incompressible
orthotropic media, see (20).

2.2 Necessary conditions for arbitrary directions

The inequalities we derived thus far are insufficient to satisfy condition (2.11) for an arbitrary unit
vector n. Therefore, we need to construct additional inequalities that, together with inequalities (2.12),
(2.18) and (2.19), would be both necessary and sufficient to satisfy (2.11) for a general direction of
wave propagation. This is best done by introducing the following new functions of n:

ψ1 = 2β1 + n4
2 + n4

3

n2
2n2

3

c44 + n2
1

n2
3

c55 + n2
1

n2
2

c66 ,

ψ2 = 2β2 + n4
1 + n4

3

n2
1n2

3

c55 + n2
2

n2
3

c44 + n2
2

n2
1

c66,

ψ3 = 2β3 + n4
1 + n4

2

n2
1n2

2

c66 + n2
3

n2
2

c44 + n2
3

n2
1

c55 .

(2.23)
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Because of the already established inequalities (2.12), (2.18) and (2.19), it is easy to see thatψi > 0,
i = 1, 2, 3, for all unit vectors n. Written in terms of these functions, condition (2.11) takes the form

(ψ3 − ψ1 − ψ2)
2 < 4ψ1ψ2 . (2.24)

Since the product ψ1ψ2 is positive, it is clear that condition (2.24) necessitates that

ψ3 < ψ1 + ψ2 + 2
√
ψ1ψ2 . (2.25)

This condition is simpler than (2.11) or (2.24), but is implicit still. Hence, we are now going to
consider particular unit vectors n such that the square root on the right-hand side of (2.25) can be
evaluated explicitly,1 that is, that

√
ψ1ψ2 = ψ . For such directions there exists a positive constant

W such that

ψ1 = ψ

W
, ψ2 = ψW . (2.26)

Straightforward algebraic manipulations allow one to conclude that this can be achieved provided

n2
1 = n2

3

1 + W
, n2

2 = Wn2
3

1 + W
, where W = ν2

ν1
(2.27)

and definitions (2.20) were used. When direction (2.27) is inserted into inequality (2.25), it takes the
following explicit form

ν3 < 2c66 + (
√
ν1 + √

ν2)2 . (2.28)

The original condition (2.24) is symmetric in ψ1, ψ2 and ψ3. By applying the outlined procedure to
different permutations of indices, one can obtain two more explicit conditions

ν1 < 2c44 + (
√
ν2 + √

ν3)2 , ν2 < 2c55 + (
√
ν1 + √

ν3)2 . (2.29)

The newly obtained inequalities (2.28) and (2.29) are necessary conditions that follow from strong
ellipticity condition (2.11). In the following Section 2.3 we will prove that, when considered together
with inequalities (2.12) and (2.21), they also happen to be sufficient.

2.3 Sufficient conditions for an arbitrary direction

Suppose that explicit inequalities for the components of stiffness tensor (2.12), (2.21), (2.28) and
(2.29) hold true. We already mentioned in Section 2.1 that inequalities (2.12) and (2.21) are sufficient
to ensure that condition (2.10) holds for an arbitrary direction n. In addition, these inequalities are
sufficient to satisfy condition (2.11) for directions confined to coordinate planes. Therefore, we are
going to assume that vector n does not belong to a coordinate plane and will prove that inequalities
(2.12), (2.21), (2.28) and (2.29) are sufficient to ensure that condition (2.11) is satisfied.

1 In their derivation of the strong ellipticity conditions for the pre-stressed media, Zee and Sternberg (18) use a conventional
procedure for finding the critical point of (2.25). However, the algebraic complexity of underlying expressions prevents them
from computing the second derivative and proving that their solution delivers a local minimum. Thus, their procedure only
serves to find the critical point in a constructive way (as opposed to specifying the critical point explicitly). We use another,
simpler constructive procedure to find the relevant point.
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Consider a function

X3 = 2ψ1ψ2 +
(

1 − n2
2

n2
3

)
c44 +

(
1 − n2

1

n2
3

)
c55 + c66 . (2.30)

It is not difficult to verify that

1
2 (ψ1ψ2 − X2

3 ) =
(
(
√
ν1 + √

ν2)n2
2 − √

ν2n2
3

)2
n2

2n2
3

c44 +
(
(
√
ν1 + √

ν2)n2
1 − √

ν1n2
3

)2
n2

1n2
3

c55

+
(√
ν2n2

1 − √
ν1n2

2

)2
n2

1n2
2

c66 + (n2
1 + n2

2 − n2
3)2 (c55c66n2

1 + c44c66n2
2 + c44c55n2

3

)
2n2

1n2
2n2

3

� 0,

(2.31)
which immediately leads to the conclusion that

X2
3 � ψ1ψ2 . (2.32)

Inequality (2.32) implies, in particular, that(√
ψ1 +√

ψ2

)2 − ψ3 � ψ1 + 2|X3| + ψ2 − ψ3 � ψ1 + 2X3 + ψ2 − ψ3 . (2.33)

After some rather tedious algebra it may be additionally shown that

ψ1 + 2X3 + ψ2 − ψ3 = 2
(

2c66 + (
√
ν1 + √

ν2)2 − ν3

)
> 0 , (2.34)

where we used inequality (2.28). Altogether, this means that

ψ3 <
(√
ψ1 +√

ψ2

)2
. (2.35)

Similar arguments can be constructed for other combinations of indices, which leads us to the
following conclusion:

ψi <
(√
ψj +√

ψk

)2
, i, j, k ∈ {1, 2, 3}, i �= j �= k �= i. (2.36)

All of ψi, i = 1, 2, 3, are positive (see definitions (2.23), as well as inequalities (2.12) and (2.21)).
Therefore, inequalities (2.36) imply, in particular, that√

ψ1 <
√
ψ2 +√

ψ3 and
√
ψ2 <

√
ψ1 +√

ψ3 , (2.37)

which is equivalent to
−√ψ3 <

√
ψ1 −√

ψ2 <
√
ψ3 , (2.38)

which, in turn, is equivalent to

ψ3 >
(√
ψ1 −√

ψ2
)2
. (2.39)

The inequalities (2.35) and (2.39) considered together are equivalent to inequality (2.24) that is
equivalent to the strong ellipticity condition (2.11). Therefore, we have now proved that the explicit
inequalities (2.12), (2.21), (2.28) and (2.29) are both necessary and sufficient conditions for the
strong ellipticity of orthorhombic, incompressible, elastic solids.
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3. Strong ellipticity of finitely and homogeneously pre-stressed solids

Now we generalise our strong ellipticity conditions to the case of a pre-stressed incompressible elastic
media, that is, to the case previously analysed by Zee and Sternberg (18). It should be mentioned that
the pre-stressed case is formally rather similar to the previously considered case of orthorhombic
symmetry. However, the response of a finitely deformed material is slightly more general, due to the
loss of symmetry of the Cauchy stress tensor, see (3, p. 250) for more details.

The pre-deformed state is assumed to be isotropic, and is referred to as the initial configuration.
A static homogeneous deformation is then imposed, transferring the initial configuration to a
reference equilibrium state. Finally, small-amplitude motions are superimposed upon the reference
configuration. The appropriate propagation condition turns out to have the same form as (2.7). It
can be shown, using the appropriate constitutive relations given by Ogden (21), that the associated
acoustic tensor is given by

Q =

⎛
⎜⎜⎝
γ11n2

1+γ21n2
2+γ31n2

3
1
2

(
γ11+γ22−2β̄3

)
n1n2

1
2

(
γ11+γ33−2β̄2

)
n1n3

1
2

(
γ11+γ22−2β̄3

)
n1n2 γ12n2

1+γ22n2
2+γ32n2

3
1
2

(
γ22+γ33−2β̄1

)
n2n3

1
2

(
γ11+γ33−2β̄2

)
n1n3

1
2

(
γ22+γ33−2β̄1

)
n2n3 γ13n2

1+γ23n2
2+γ33n2

3

⎞
⎟⎟⎠ . (3.1)

The newly introduced material constants γij and β̄k

γij = Bijij, 2β̄k = γii + γjj − 2
(
Biijj + Bijji

)
, i, j, k ∈ {1, 2, 3}, k �= i, k �= j, (3.2)

are expressed through the components of the fourth order elasticity tensor, with the non-zero
components having the form Biijj,Bijij and Bijji,

Biijj = λiλj
∂2W0

∂λi∂λj
, (3.3)

Bijij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ2
i

λ2
i − λ2

j

(
λi
∂W0

∂λi
− λj

∂W0

∂λj

)
i �= j , λi �= λj ,

1

2

(
Biiii − Biijj + λi

∂W0

∂λi

)
i �= j , λi = λj ,

(3.4)

Bijji = Bijij − λi
∂W0

∂λi
i �= j , (3.5)

where W0 is the strain-energy function, and λi are the principal stretches of the homogeneous static
pre-deformation, see (21). The formal parallels between (2.5) and (3.1) are obvious. The associated
(implicit) strong ellipticity conditions, arising from the propagation condition for pre-stressed elastic
media, may then be written as

(γ12 + γ13) n4
1 + (

γ13 + γ23 + 2β̄3
)

n2
1n2

2 + (γ21 + γ23) n4
2

+ (γ12 + γ32 + 2β̄2
)

n2
1n2

3 + (
γ21 + γ31 + 2β̄1

)
n2

2n2
3 + (γ31 + γ32) n4

3 > 0,
(3.6)
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and

γ12γ13n6
1 + (

γ23γ31 + 2β̄1γ21
)

n4
2n2

3 + (
γ21γ32 + 2β̄1γ31

)
n2

2n4
3+

+ γ21γ23n6
2 + (

γ13γ32 + 2β̄2γ12
)

n4
1n2

3 + (
γ12γ31 + 2β̄2γ32

)
n2

1n4
3+

+ γ31γ32n6
3 + (

γ12γ23 + 2β̄3γ13
)

n4
1n2

2 + (
γ13γ21 + 2β̄3γ23

)
n2

1n4
2+

+
(
γ12γ21 + γ13γ31 + γ23γ32 −

(
β̄2

1 + β̄2
2 − β̄2

3

)2 + 4β̄1β̄2

)
n2

1n2
2n2

3 > 0 .

(3.7)

The loss of symmetries of the orthorhombic case is apparent when conditions (3.6), (3.7) are
compared with the previously considered conditions. For example, c66 in (2.10), (2.11) formally
corresponds to both γ12 and γ21, which are not, generally speaking, equal to each other. Nevertheless,
the inspection of definitions (3.4) reveals the presence of an additional symmetry

λi

λj
γji = λj

λi
γij = χk , i, j, k ∈ {1, 2, 3} , i �= j �= k �= i, (3.8)

where no summation is assumed over repeated suffices. Identity (3.8) is a generalisation of the
identity γ12λ

2
2 = γ21λ

2
1, often used in the analysis of the plane strain problems (22).

If, as in Section 2.1, one considers wave vectors n aligned with the coordinate axes, it may be
shown that the conditions (3.6), (3.7) imply six inequalities

γij > 0 , i, j ∈ {1, 2, 3} , i �= j . (3.9)

Moreover, using the symmetries (3.8), we may reduce (3.9) to three conditions

χk > 0 , k ∈ {1, 2, 3} . (3.10)

The analysis for wave vectors confined to coordinate planes is also rather similar to that presented
in great detail in the previous section. For example, in the Ox1x2 plane the condition (3.7) reduces
to

γ12γ13n6
1 + (

γ12γ23 + 2β̄3γ13
)

n4
1n2

2 + (
γ13γ21 + 2β̄3γ23

)
n2

1n4
2 + γ21γ23n6

2 > 0 . (3.11)

Applying Zee and Sternberg’s lemma, just as in Section 2.1, we obtain that condition (3.11) holds
iff

either |β̄3| < √
γ12γ21 or

(
β̄3 > −γ23

γ13

γ12

2
and β̄3 > −γ13

γ23

γ21

2

)
, (3.12)

which also satisfies condition (3.6). Once again, using identity (3.8), one can rewrite (3.12) as

either |β̄3| < χ3 or

(
β̄3 > −χ1

χ2

χ3

2
and β̄3 > −χ2

χ1

χ3

2

)
, (3.13)

which is equivalent to β̄3 > −χ3. Similar analysis for the other two coordinate planes may be
performed, and the well-known necessary and sufficient strong ellipticity conditions for plane strain

 at B
runel U

niversity on D
ecem

ber 4, 2015
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/


[15:10 26/11/2015 hbv017.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 11 1–15

STRONG ELLIPTICITY OF INCOMPRESSIBLE SOLIDS 11

deformations of a pre-stressed elastic solid may then be written as

ν̄k > 0 , k ∈ {1, 2, 3} , (3.14)

where ν̄k = β̄k + χk . Conditions (3.10), and (3.14) turn out to be the necessary and sufficient strong
ellipticity conditions for wave vectors confined to coordinate planes.

The analysis for general three-dimensional wave vectors is more involved, but can also be
reproduced if steps in Sections 2.2 and 2.3 are reproduced using the definitions

ψ̄k = 2β̄k + γki
n2

k

n2
i

+ γkj
n2

k

n2
j

+ γij
n2

i

n2
j

+ γji
n2

j

n2
i

, i, j, k ∈ {1, 2, 3} , i �= j �= k �= i, (3.15)

instead of ψk for the orthorhombic case. The rest of the derivations are fully identical, see Pichugin
(23, Chapter 1) for more details, and the counterpart of (2.28) and (2.29) may be shown to have the
form

ν̄k < 2χk +
(√
ν̄i +√

ν̄j

)2
, i, j, k ∈ {1, 2, 3} , i �= j �= k �= i. (3.16)

Together, conditions (3.10), (3.14) and (3.16) constitute the necessary and sufficient conditions for
the strong ellipticity of a homogeneously pre-stressed incompressible solid. In contrast to the results
obtained in (18), these formulae are given directly in terms of components of the incremental stiffness
tensor.

4. Discussion of the obtained conditions

Since explicit strong ellipticity conditions were typically unavailable, or available in inconvenient
form, many parametric analyses of boundary value problems in elasticity were performed under
some other form of constitutive assumptions. A number of plane strain results were obtained under
the assumption of two-dimensional strong ellipticity conditions, equivalent to inequalities (2.12)
and (2.21), which are always easy to derive. The positive definiteness of the strain energy density is
also sometimes considered, even though the physical significance of such restriction in a constrained
medium is unclear (1, p. 238). For example, Nair and Sotiropoulos in their analysis of plane wave
reflection in the plane strain problem showed that the two-dimensional strong ellipticity conditions
in their case are identical to the conditions that ensure positive definiteness of the associated strain
energy density (20). Therefore, it seems worthwhile to assess relative strength of the mentioned
constitutive inequalities, especially when applied to solids belonging to higher symmetry classes.

We begin by constructing explicit conditions that ensure positive definiteness of the strain energy
density. The strain energy density is defined as

U = 1
2σijεij . (4.1)

Incompressibility constraint (2.1)2 may be written as εii = 0. Using the constitutive relations (2.2),
quadratic form (4.1) can be re-written in one of the three essentially equivalent forms, omitting either
ε11 or ε22 or ε33:

U = ν3ε
2
22 + (ν2 + ν3 − ν1)ε22ε33 + ν2ε

2
33 + 2c66ε

2
12 + 2c55ε

2
13 + 2c44ε

2
23

= ν3ε
2
11 + (ν1 + ν3 − ν2)ε11ε33 + ν1ε

2
33 + 2c66ε

2
12 + 2c55ε

2
13 + 2c44ε

2
23 (4.2)

= ν2ε
2
11 + (ν1 + ν2 − ν3)ε11ε22 + ν1ε

2
22 + 2c66ε

2
12 + 2c55ε

2
13 + 2c44ε

2
23 ,
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Table 1 Explicit strong ellipticity conditions specialized to higher symmetry classes and viewed
in the context of two-dimensional (plane strain) and three-dimensional deformations

Material Strong Positive definiteness of
symmetry ellipticity the strain energy density

Isotropic (2D+3D) μ = 1
2 (c11 − c12) > 0

Cubic (2D+3D) c44 > 0, c12 < c11

Hexagonal (2D) c44 > 0, c12 < c11, 2c13 < c11 + c33

Hexagonal (3D) — 4c13 − 2c33 − c11 < c12

Tetragonal (2D) c44 > 0, c66 > 0, c12 < c11, 2c13 < c11 + c33

Tetragonal (3D) 4c13 − 2c33 − 2c66 − c11 < c12 4c13 − 2c33 − c11 < c12

see definitions (2.20). If one’s attention is restricted to plane strain deformations, the strong ellipticity
conditions for the coordinate axes and planes turn out to be necessary and sufficient for the positive
definiteness of U. For example, for problems confined to the plane Ox1x2 when ε13 = ε23 = ε33 = 0
and ε11 + ε22 = 0, the elementary analysis of the third line of (4.2) gives c66 > 0 and ν3 > 0.
Consideration of all three coordinate planes results in the full set of conditions (2.12) and (2.21).
Therefore, for plane strain problems, the strong ellipticity conditions are fully equivalent to the
requirement of positive definiteness of the strain energy density U.

More general conditions may be obtained by considering strain configurations for which ε12, ε13,
ε23, and one of ε11 or ε22 or ε33, are equal to zero. The positive definiteness of U in this case can be
shown to be equivalent to the following inequalities

4ν2ν3 > (ν2 + ν3 − ν1)2, 4ν1ν3 > (ν1 + ν3 − ν2)2, 4ν1ν2 > (ν1 + ν2 − ν3)2. (4.3)

Incidentally, these conditions are also sufficient to ensure the positive definiteness of U, which can
be seen by analysing the first three terms of each quadratic form in (4.2).

Using the previously established conditions (2.12) and (2.21), one can rearrange the inequali-
ties (4.3) in a more explicit form and conclude that the positive definiteness of U is equivalent to the
following set of necessary and sufficient conditions

c44 > 0 , c55 > 0 , c66 > 0 ,

(
√
ν2 − √

ν3)2 < ν1 < (
√
ν2 + √

ν3)2 ,

(
√
ν1 − √

ν3)2 < ν2 < (
√
ν1 + √

ν3)2 ,

(
√
ν1 − √

ν2)2 < ν3 < (
√
ν1 + √

ν2)2 .

(4.4)

Written in this form, conditions (4.4) are obviously stronger than the strong ellipticity conditions we
derived earlier.
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How much of a difference do the additional, non-plane strain (three-dimensional) strong ellipticity
conditions make for the materials that belong to higher symmetry classes? We derived explicit
versions of conditions (2.12), (2.21), (2.28) and (2.29), as well as explicit versions of conditions (4.4),
for principal symmetry classes and presented them in Table 1. This analysis showed that

• For isotropic, cubic and hexagonal media the strong ellipticity conditions obtained for plane
strain deformations are also correct for general deformations;

• For hexagonal and tetragonal media, the positive definiteness of the strain energy density requires
to satisfy, in addition to the usual plane strain conditions, one more inequality 4c13 −2c33 −c11 <

c12;
• Only for tetragonal (and orthorhombic) materials newly obtained strong ellipticity condi-

tions (2.28) and (2.29) result in non-trivial additional requirements compared to the strong
ellipticity conditions known for plane strain deformations.

5. Conclusion

In this article, we obtained two sets of explicit strong ellipticity conditions for incompressible
elastic media. More specifically, the following conditions, equivalent to inequalities (2.12), (2.18),
(2.19), (2.28) and (2.29), are the necessary and sufficient conditions for the strong ellipticity of the
orthorhombic incompressible solids:

c44 > 0 , c55 > 0 , c66 > 0 , (5.1)

− c44 < β1 < c44 +
(√
β2 + c55 +√

β3 + c66

)2
, (5.2)

− c55 < β2 < c55 +
(√
β1 + c44 +√

β3 + c66

)2
, (5.3)

− c66 < β3 < c66 +
(√
β1 + c44 +√

β2 + c55

)2
, (5.4)

with the definitions for β1, β2 and β3 given by (2.6).
The left-hand side inequalities in (5.2)–(5.4) are not new and may be obtained by considering

plane strain deformations, whereas the right-hand side inequalities are new and result from
considering three-dimensional deformations. It is worth stressing that our analysis of higher
symmetry classes, summarized in Table 1, indicates that the newly derived three-dimensional strong
ellipticity conditions are trivial for isotropic, cubic and hexagonal incompressible media. Non-trivial
consequences of the right-hand side inequalities in (5.2)–(5.4) only become apparent in tetragonal
and orthorhombic incompressible media.

In the case of homogeneously pre-stressed incompressible elastic media the necessary and
sufficient strong ellipticity conditions are given by

γ12 > 0, γ13 > 0, γ23 > 0, (5.5)

−√
γ23γ32 < β̄1 <

√
γ23γ32 +

(√
β̄2 + √

γ13γ31 +
√
β̄3 + √

γ12γ21

)2

, (5.6)

−√
γ13γ31 < β̄2 <

√
γ13γ31 +

(√
β̄1 + √

γ23γ32 +
√
β̄3 + √

γ12γ21

)2

, (5.7)
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−√
γ12γ21 < β̄3 <

√
γ12γ21 +

(√
β̄1 + √

γ23γ32 +
√
β̄2 + √

γ13γ31

)2

, (5.8)

with the constants γij and βk , i, j, k ∈ {1, 2, 3}, defined in (3.2).
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