1,423 research outputs found

    A Byzantine Fault Tolerant Distributed Commit Protocol

    Full text link
    In this paper, we present a Byzantine fault tolerant distributed commit protocol for transactions running over untrusted networks. The traditional two-phase commit protocol is enhanced by replicating the coordinator and by running a Byzantine agreement algorithm among the coordinator replicas. Our protocol can tolerate Byzantine faults at the coordinator replicas and a subset of malicious faults at the participants. A decision certificate, which includes a set of registration records and a set of votes from participants, is used to facilitate the coordinator replicas to reach a Byzantine agreement on the outcome of each transaction. The certificate also limits the ways a faulty replica can use towards non-atomic termination of transactions, or semantically incorrect transaction outcomes.Comment: To appear in the proceedings of the 3rd IEEE International Symposium on Dependable, Autonomic and Secure Computing, 200

    Hosting Byzantine Fault Tolerant Services on a Chord Ring

    Get PDF
    In this paper we demonstrate how stateful Byzantine Fault Tolerant services may be hosted on a Chord ring. The strategy presented is fourfold: firstly a replication scheme that dissociates the maintenance of replicated service state from ring recovery is developed. Secondly, clients of the ring based services are made replication aware. Thirdly, a consensus protocol is introduced that supports the serialization of updates. Finally Byzantine fault tolerant replication protocols are developed that ensure the integrity of service data hosted on the ring.Comment: Submitted to DSN 2007 Workshop on Architecting Dependable System

    Generalized Paxos Made Byzantine (and Less Complex)

    Full text link
    One of the most recent members of the Paxos family of protocols is Generalized Paxos. This variant of Paxos has the characteristic that it departs from the original specification of consensus, allowing for a weaker safety condition where different processes can have a different views on a sequence being agreed upon. However, much like the original Paxos counterpart, Generalized Paxos does not have a simple implementation. Furthermore, with the recent practical adoption of Byzantine fault tolerant protocols, it is timely and important to understand how Generalized Paxos can be implemented in the Byzantine model. In this paper, we make two main contributions. First, we provide a description of Generalized Paxos that is easier to understand, based on a simpler specification and the pseudocode for a solution that can be readily implemented. Second, we extend the protocol to the Byzantine fault model

    A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems

    Full text link
    Supercomputing systems today often come in the form of large numbers of commodity systems linked together into a computing cluster. These systems, like any distributed system, can have large numbers of independent hardware components cooperating or collaborating on a computation. Unfortunately, any of this vast number of components can fail at any time, resulting in potentially erroneous output. In order to improve the robustness of supercomputing applications in the presence of failures, many techniques have been developed to provide resilience to these kinds of system faults. This survey provides an overview of these various fault-tolerance techniques.Comment: 11 page
    • …
    corecore