2 research outputs found

    Adaptive Integrated Circuit Design for Variation Resilience and Security

    Get PDF
    The past few decades witness the burgeoning development of integrated circuit in terms of process technology scaling. Along with the tremendous benefits coming from the scaling, challenges are also presented in various stages. During the design time, the complexity of developing a circuit with millions to billions of smaller size transistors is extended after the variations are taken into account. The difficulty of analyzing these nondeterministic properties makes the allocation scheme of redundant resource hardly work in a cost-efficient way. Besides fabrication variations, analog circuits are suffered from severe performance degradations owing to their physical attributes which are vulnerable to aging effects. As such, the post-silicon calibration approach gains increasing attentions to compensate the performance mismatch. For the user-end applications, additional system failures result from the pirated and counterfeited devices provided by the untrusted semiconductor supply chain. Again analog circuits show their weakness to this threat due to the shortage of piracy avoidance techniques. In this dissertation, we propose three adaptive integrated circuit designs to overcome these challenges respectively. The first one investigates the variability-aware gate implementation with the consideration of the overhead control of adaptivity assignment. This design improves the variation resilience typically for digital circuits while optimizing the power consumption and timing yield. The second design is implemented as a self-validation system for the calibration of diverse analog circuits. The system is completely integrated on chip to enhance the convenience without external assistance. In the last design, a classic analog component is further studied to establish the configurable locking mechanism for analog circuits. The use of Satisfiability Modulo Theories addresses the difficulty of searching the unique unlocking pattern of non-Boolean variables

    In Situ Automatic Analog Circuit Calibration and Optimization

    Get PDF
    As semiconductor technology scales down, the variations of active/passive device characteristics after fabrication are getting more and more significant. As a result, many circuits need more accuracy margin to meet minimum accuracy specifications over huge process-voltage-temperature (PVT) variations. Although, overdesigning a circuit is sometimes not a feasible option because of excessive accuracy margin that requires high power consumption and large area. Consequently, calibration/tuning circuits that can automatically detect and compensate the variations have been researched for analog circuits to make better trade-offs among accuracy, power consumption, and area. The first part of this dissertation shows that a newly proposed in situ calibration circuit for a current reference can relax the sharp trade-off between the temperature coefficient accuracy and the power consumption of the current reference. Prototype chips fabricated in a 180 nm CMOS technology generate 1 nA and achieve an average temperature coefficient of 289 ppm/°C and an average line sensitivity of 1.4 %/V with no help from a multiple-temperature trimming. Compared with other state-of-the-art current references that do not need a multiple-temperature trimming, the proposed circuit consumes at least 74% less power, while maintaining similar or higher accuracy. The second part of this dissertation proves that a newly proposed multidimensional in situ analog circuit optimization platform can optimize a Tow-Thomas bandpass biquad. Unlike conventional calibration/tuning approaches, which only handle one or two frequency-domain characteristics, the proposed platform optimizes the power consumption, frequency-, and time-domain characteristics of the biquad to make a better trade-off between the accuracy and the power consumption of the biquad. Simulation results show that this platform reduces the gain-bandwidth product of op-amps in the biquad by 80% while reducing the standard deviations of frequency- and time-domain characteristics by 82%. Measurement results of a prototype chip fabricated in a 180 nm CMOS technology also show that this platform can save maximum 71% of the power consumption of the biquad while the biquad maintains its frequency-domain characteristics: Q, ωO and the gain at ωO
    corecore