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ABSTRACT

As semiconductor technology scales down, the variations of active/passive device characteris-

tics after fabrication are getting more and more significant. As a result, many circuits need more

accuracy margin to meet minimum accuracy specifications over huge process-voltage-temperature

(PVT) variations. Although, overdesigning a circuit is sometimes not a feasible option because of

excessive accuracy margin that requires high power consumption and large area. Consequently,

calibration/tuning circuits that can automatically detect and compensate the variations have been

researched for analog circuits to make better trade-offs among accuracy, power consumption, and

area.

The first part of this research shows that a newly proposed in situ calibration circuit for a current

reference can relax the sharp trade-off between the temperature coefficient accuracy and the power

consumption of the current reference. Prototype chips fabricated in a 180 nm CMOS technology

generate 1 nA and achieve an average temperature coefficient of 289 ppm/°C and an average line

sensitivity of 1.4 %/V with no help from a multiple-temperature trimming. Compared with other

state-of-the-art current references that do not need a multiple-temperature trimming, the proposed

circuit consumes at least 74% less power, while maintaining similar or higher accuracy.

The second part of this research proves that a newly proposed multidimensional in situ analog

circuit optimization platform can optimize a Tow-Thomas bandpass biquad. Unlike conventional

calibration/tuning approaches, which only handle one or two frequency-domain characteristics, the

proposed platform optimizes the power consumption, frequency-, and time-domain characteristics

of the biquad to make a better trade-off between the accuracy and the power consumption of the

biquad. Simulation results show that this platform reduces the gain-bandwidth product of op-

amps in the biquad by 80% while reducing the standard deviations of frequency- and time-domain

characteristics by 82%. Measurement results of a prototype chip fabricated in a 180 nm CMOS

technology also show that this platform can save maximum 71% of the power consumption of the

biquad while the biquad maintains its frequency-domain characteristics: Q, ωO, and the gain at

ii



ωO.
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1. INTRODUCTION

As semiconductor technology scales down, the variations of circuit characteristics are getting

more and more significant [1,2]. To have both of a high yield and enough performance better than

required specifications given by customers, the most intuitive approach is designing a circuit that

has much better performance than the minimum requirement as Fig. 1.1 shows. In Fig. 1.1, larger

z1 and z2 mean better performance. The location of an actual operating point of the designed circuit

can be anywhere enclosed by the dotted line in Fig. 1.1 when there are process-voltage-temperature

(PVT) variations. Since the design point has enough margins for z1 and z2 circuit characteristics, an

actual operating point of the designed circuit can always be in the region of acceptable performance

regardless of PVT variations. However, the overdesigned circuit normally requires sacrificing

other circuit characteristics that are less important for a certain application. For example, the

most important circuit characteristics of a high-precision voltage or current reference circuit are

the temperature coefficient and the line sensitivity of the circuit. Consequently, a circuit designer

sometimes sacrifices the area and the power consumption of the reference circuit to achieve a low

temperature coefficient and a small line sensitivity regardless of PVT variations.

Since achieving excessive performance that has a huge margin is sometimes not feasible, many

research have been conducted to make a better trade-off among circuit characteristics. One com-

mon approach for the purpose is utilizing an in situ automatic calibration/tuning circuit. Fig. 1.2(a)

shows the benefit of the approach. When we place our design point at A, an actual operating point

of the designed circuit (A’) can be located outside of the region of acceptable performance due to

PVT variations. However, the actual operating point can move to A thanks to the calibration/tuning

circuit that evaluates the circuit characteristic z1 and compensates the difference between the re-

quired z1 value and the actual z1 value. Therefore, we do not need to excessively sacrifice other

circuit characteristics that are less important for a certain application because the large margin for

z1 is not needed anymore. This approach generally makes a better trade-off among circuit charac-

teristics when the area and the power consumption overheads of the calibration/tuning circuit are
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Figure 1.2: New design point when a 1-dimension calibration/tuning or a N-dimension optimiza-
tion is employed. (a) 1-dimension calibration/tuning case. (b) N-dimension optimization case.

minimized.

Even though researchers have researched various calibration/tuning circuits for many analog

circuits for a long time, the previous research have two limitations. First, there are still several

analog circuits that have not been calibrated/tuned by an in situ automatic calibration/tuning circuit.

For example, an in situ automatic calibration circuit for a current reference, to the best of the

author’s knowledge, has not been reported. Second, in many cases, calibration/tuning techniques

that have been researched so far deal with only one circuit characteristic, leading to a suboptimal

circuit. Fig. 1.2(a) shows the limitation clearly. The design point A still needs a large margin for

2



z2 since the calibration/tuning circuit in the example only compensates the deviation of z1. As a

result, we still need to sacrifice less important circuit characteristics to some extent.

This dissertation investigates two approaches that overcome the aforementioned limitations.

The first research [3] proposes an in situ automatic calibration circuit for an ultralow-power cur-

rent reference. Since the calibration circuit detects a current generated from the ultralow-power

current reference and compensates its deviations over PVT variations, the generated current can be

accurate. The power consumption overhead of the calibration circuit is small because unnecessary

circuits are powered off after each calibration. Therefore, the calibration circuit can relax the tight

trade-off between the accuracy and the power consumption of the current reference.

The second research [4] proposes a built-in self-test and in situ analog circuit optimization

platform. Since the platform optimizes multiple competing circuit characteristics simultaneously

unlike conventional calibration/tuning circuits, margins for the multiple circuit characteristics can

be greatly reduced. Consequently, a designer can choose the design point at the bottom left corner

of the region of acceptable performance (B) in Fig. 1.2(b), resulting in a better trade-off among

circuit characteristics. Turning on the platform only when it is needed can relax the power con-

sumption overhead of the platform. We can mitigate the area overhead as well by utilizing the

platform for multiple linear time-invariant (LTI) analog circuits on the same chip.

The rest of this dissertation is structured as follows. Chapter 2 introduces previous research

on current reference circuits. Chapter 3 discusses the newly proposed in situ automatic calibration

circuit for a current reference in detail. Previous research on in situ analog circuit optimization are

summarized in Chapter 4. Chapter 5 elaborates the newly proposed built-in self-test and in situ

analog circuit optimization platform. Finally, future works are discussed in Chapter 6.
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2. A SURVEY ON CURRENT REFERENCE CIRCUITS

2.1 Background

2.1.1 Temperature-Dependent Physical Quantities

Since current generated from a current reference circuit is a function of physical quantities,

understanding the temperature dependence of the physical quantities is essential to evaluate the

temperature dependence of the generated current. There are five physical quantities that are

widely used in current reference circuits to generate a stable current: the thermal voltage (VT), the

base-emitter voltage of a bipolar junction transistor (VBE), the threshold voltage of a metal-oxide-

semiconductor field-effect transistor (VTH), the electron/hole mobility (µ), and the resistances of

various resistors (R).

At room temperature, the thermal voltage, which equals to kT/q, is approximately 26 mV. The

following equation shows the temperature coefficient of VT.

VT,TC =
1

VT

∂VT

∂T
=

1

T
. (2.1)

As (2.1) shows, the thermal voltage is a proportional-to-absolute-temperature (PTAT) quantity and

has a temperature coefficient of 3333 ppm/°C at room temperature.

According to [5], the temperature variation of VBE is given by

∂VBE

∂T
=

VBE − 2.5VT − 1.12

T
. (2.2)

When VBE equals to 600 mV, the temperature variation of VBE is -2 mV/°C at room temperature,

leading to a temperature coefficient of -3333 ppm/°C. Note that VBE cannot be arbitrary small. If

VBE equals to 170 mV, the temperature variation of VBE is -3.38 mV/°C at room temperature. If

we ignore the temperature dependency of the temperature variation, VBE will be close to 0 mV at

77 °C, which is not acceptable for many circuits.
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The temperature variation of VTH is also approximately -2 mV/°C [6]. Consequently, the tem-

perature coefficient of VTH is -6667 ppm/°C when VTH equals to 300 mV at room temperature.

The temperature dependency of the electron/hole mobility can be expressed as

µ = µ0(T0/T )
n. (2.3)

In (2.3), T0 is a reference temperature, and µ0 is the mobility at the reference temperature, and n

equals to 1.5. The temperature coefficient of the mobility can be written as

µTC = −1.5/T. (2.4)

As a result, µTC is -5000 ppm/°C at room temperature.

The temperature coefficient of the resistance of a resistor can be positive or negative depending

on the type of the resistor. The temperature coefficient also depends on a process technology. In

many cases, a resistor has a temperature coefficient of several hundreds or thousands ppm/°C.

2.1.2 Two Types of Computations to Get a Temperature-Independent Current

The physical quantities discussed in Section 2.1.1 have temperature coefficients much higher

than 100 ppm/°C. Accordingly, it is hard to generate a stable current that has a temperature co-

efficient comparable to 100 ppm/°C by relying on only one physical quantity. More viable way

is utilizing multiple physical quantities and allowing their temperature coefficients to cancel each

other.

Two types of computations can cancel the temperature coefficients of physical quantities. The

first type is addition/subtraction. If we assume that there are two physical quantities, A and B, then

the generated current (I) from a current reference circuit can be

I = c1A± c2B. (2.5)

In (2.5), c1 and c2 are temperature-independent constants. The temperature coefficient of I is given

5



by

ITC =
1

I

∂I

∂T
=

c1A

c1A± c2B
ATC ±

c2B

c1A± c2B
BTC . (2.6)

Here ATC and BTC are the temperature coefficients of A and B, respectively. As (2.6) shows, ITC

can be zero when we select an appropriate ratio between c1A and c2B. However, ITC in (2.6) can

be sensitive over process variation when c1A and c2B do not have a correlation over the process

variation, which is generally true for many circuits. Consequently, a multiple temperature trimming

is required to obtain a small ITC over process variation even when ATC and BTC are less sensitive

for the process variation.

The second type of computation to cancel the temperature coefficients of physical quantities is

multiplication/division. When we use a multiplication, I can be expressed as

I = cAB, (2.7)

where c is a temperature-independent constant. (2.7) results in

ITC = ATC +BTC . (2.8)

On the contrary, a division (I = cA/B) leads to

ITC = ATC −BTC . (2.9)

(2.8) and (2.9) show that ITC can be zero when the absolute values of ATC and BTC are the same. If

ATC and BTC are less sensitive over process variation, we can obtain a stable ITC with no help from

a multiple temperature trimming. However, when ATC is different from BTC, there is no design

flexibility to compensate the difference because c cannot make any change for ITC.

In summary, the two types of computations show the trade-off between design flexibility and

robustness. Although an addition/subtraction gives us a design flexibility to make ITC small, ITC is

less robust over process variation. A multiplication/subtraction can guarantee a stable ITC while it
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Figure 2.1: An example of ΔVBE-based current references.

provides less design freedom.

2.2 Four Types of Current Reference Circuits

2.2.1 ΔVBE-based Current References

One of the conventional approaches to generate a stable current is utilizing the difference be-

tween two VBE as Fig. 2.1 shows [7]. The collector current of a bipolar junction transistor (IC)

is

IC = ISe
VBE/VT . (2.10)

Thus,

VBE = VT ln (IC/IS). (2.11)
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When we assume that the base current of each bipolar junction transistor (BJT) is negligible, VBE1

in Fig. 2.1 is

VBE1 = VT ln (IE1/IS). (2.12)

Here, IE1 is the emitter current of the left BJT. Since the emitter area of the right BJT is N times

larger than that of the left BJT, VBE2 is

VBE2 = VT ln (IE2/(NIS)). (2.13)

If we assume that there is no mismatch between M1 and M2, IE1 equals to IE2, considering that the

op-amp (A1) matches the voltage of node N1 with the voltage of N2. Consequently, the voltage

difference between the two terminals of the resistor is

∆VBE = VT lnN. (2.14)

Therefore, the current flowing through the resistor is

I =
VT lnN

R
. (2.15)

The temperature coefficient of I is

ITC = VT,TC −RTC . (2.16)

Even though a designer can choose a resistor that has a temperature coefficient close to VT,TC, the

circuit in Fig. 2.1 cannot provide a design flexibility to make ITC zero. This is a natural consequence

because (2.15) uses a division.

Modified versions of the circuit in Fig. 2.1 have been proposed to provide more design free-

dom [8–10]. Fig. 2.2(a) and Fig. 2.2(b) show the circuits proposed in [8] and [9], respectively. In
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Figure 2.2: ΔVBE-based current references that can provide a design flexibility. (a) utilizes an
op-amp to generate ΔVBE, whereas (b) uses a self-biased current mirror for the same purpose.

Fig. 2.2(a), the generated current is

I = I1 + I2 =
VT lnN

R0

+
VBE1

R1

. (2.17)

Thus, ITC is

ITC =
I1

I1 + I2
I1,TC +

I2
I1 + I2

I2,TC

=
I1

I1 + I2
(VT,TC −R0,TC) +

I2
I1 + I2

(VBE1,TC −R1,TC). (2.18)

ITC can be zero only when I1,TC and I2,TC have opposite polarities. At a certain temperature, we

can choose an appropriate ratio between I1 and I2 by using design parameters (N, R0, and R1) to

obtain zero ITC. However, the ratio cannot be maintained for a wide temperature range because of

the opposite polarities of I1,TC and I2,TC. As a result, ITC can be zero only at a specific temperature.

In addition, the ratio cannot be maintained over process variation as well due to the fact thatΔVBE

is not sensitive over process variation unlike VBE. Therefore, process variation can significantly
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change both of I and ITC.

The circuit in Fig. 2.2(b) has the same design equation with the circuit in Fig. 2.2(a). Accord-

ingly, the circuit has the same limitations we discussed in the previous paragraph. The difference

between the two circuits comes from the two circuit implementations of the same design equation.

The circuit in Fig. 2.2(b) utilizes a self-biased current mirror instead of an op-amp to generate

ΔVBE, resulting in the reduced power consumption of the circuit. In addition, M2 and M3 generate

I2 in (2.17) by assigning VBE to R1.

ΔVBE-based current references are not widely used for generating a current smaller than 1 µA

because of two reasons. First, as discussed in Section 2.1.1, VBE should be higher than 170 mV at

room temperature. This means that R1 in Fig. 2.2(a) and Fig. 2.2(b) should be larger than 170 MΩ

to generate a current smaller than 1 nA, leading to an excessively large area. Second, VBE,TC is

large and sensitive to VBE variation when VBE is small as (2.2) shows. Due to the large VBE,TC, I2

in (2.18) should be much smaller than I1, resulting in an even larger R1.

Note that when IC is small, the ratio between IC and IB (βF) is not constant anymore and

decreases significantly [6]. Accordingly, we cannot approximate IE to IC, and the temperature

variation of βF should be considered in (2.16) and (2.18).

2.2.2 Beta-multiplier-based Current References

Another type of conventional current references is based on a beta multiplier. Fig. 2.3 shows

one of beta-multiplier-based current references. When the circuit starts its operation, the source

voltage of M2 is close to 0 V. Consequently, the drain current ratio between M2 and M1 is approxi-

mately K. Since the current mirror that consists of M3 and M4 matches I1 with I2, the drain currents

of M1 and M2 keep increasing until the source voltage of M2 reaches the voltage that sets the drain

current ratio between M1 and M2 as 1. At the operating point, I1 equals to I2.

When all MOSFETs are in the saturation region, I1 and I2 can be expressed as below.

I = I1 = I2 =
2

µnCoxWN/LN

1

R2
S

(
1− 1√

K

)
. (2.19)
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Figure 2.3: An example of beta-multiplier-based current references.

Thus, ITC is

ITC = −µn,TC − 2RS,TC . (2.20)

(2.19) and (2.20) show two limitations of the circuit in Fig. 2.3. First, the circuit is not appropriate

for generating a nA-range current. Let K ′ = 1 − 1/
√
K. Since µnCoxWN/LN = 2I/V 2

OV 1, we

can rewrite (2.19) as

RS =
VOV 1

I

√
K ′. (2.21)

Here, VOV1 means the overdrive voltage of M1. When VOV1 equals to 100 mV, K equals to 2, and

I equals to 1 nA, RS will be 54 MΩ, which takes a huge area. Additionally, channel lengths of

M1~M4 should be long enough to guarantee that all MOSFETS are in the saturation region while

generating a nA-range current, resulting in a large area as well. The second limitation is that there

is no design flexibility that can set ITC as zero. This is because µn and RS are multiplied in (2.19).

Various circuits have been proposed to overcome the first limitation by improving the circuit

shown in Fig. 2.3 [11–13]. Instead of using RS, [11] utilizes a PTAT floating voltage source inserted

between the gates of M1 and M2 as Fig. 2.4(a) shows. In Fig. 2.4(a), if we assume that there is no
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Figure 2.4: An example of beta-multiplier-based current references that do not use a resistor. (a)
Schematic of the current reference. (b) Schematic of the PTAT voltage source.

threshold voltage mismatch between M1 and M2, I2 is

I2 = µnCoxK1
WN

LN

V 2
PTAT

(1−
√
m)2

, (2.22)

where m equals to K1K2, and VPTAT is the voltage of the PTAT voltage source. Since I2 is pro-

portional to V2
PTAT, a small VPTAT results in a small I2 while all MOSFETs in Fig. 2.4(a) are in

the saturation region. Fig. 2.4(b) represents the circuit implementation of the PTAT floating volt-

age source. The following equation relates the input voltage (V I) and the output voltage (VO) of

the floating voltage source by assuming that the MOSFETs in Fig. 2.4(b) are in the subthreshold

region.

VO = VI + nVT ln(
W6/L6

W5/L5

). (2.23)
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Consequently,

VPTAT = nVT ln(
W6/L6

W5/L5

). (2.24)

From (2.22) and (2.24), I2,TC is

I2,TC = µn,TC + 2VT,TC . (2.25)

Even though the circuit in Fig. 2.4 can generate a nA-range current while consuming small area, it

still does not have a design flexibility for I2,TC.

Unlike [11], [12] employs a high-voltage MOSFET to remove RS. On the other hand, [13] uses

two different body biases for a current mirror in a beta multiplier for the same purpose with [12].

Since the circuits proposed in [12] and [13] generate a µA-range current, it is hard to justify that

the circuits are better than the circuit in Fig. 2.3.

Circuits proposed in [14, 15] improve the design freedom of the circuit in Fig. 2.3 to obtain

the better temperature coefficient of the generated current. [14] replaces RS with a linear-region

MOSFET and assigns a PTAT voltage to the drain of the linear-region MOSFET. Since a bandgap

voltage reference generates the PTAT voltage, the temperature coefficient of the PTAT voltage can

be designed to minimize the temperature coefficient of the generated current. [15] improves the

design flexibility by adding one more diode-connected MOSFET to the source of M1 in Fig. 2.3.

Unfortunately, both of [14] and [15] do not provide measurement results.

If M1 and M2 in Fig. 2.3 are in the subthreshold region and if we ignore nonideal effects such

as the finite resistance seen at the drain, the drain-induced barrier lowering, and the body effect of

the MOSFETs, the generated current is given by

I = I1 = I2 =
nVT ln(K)

RS

, (2.26)

where n is the slope factor. Thus,

ITC = VT,TC −RS,TC . (2.27)
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The numerator in (2.26) is 27 mV at room temperature when n and K equal to 1.5 and 2, respec-

tively. As a result, to generate a 1 nA current, RS should be 27 MΩ, which is 50% smaller than

the resistance calculated from (2.21). However, when M1 and M2 are in the subthreshold region,

the beta multiplier is more sensitive to mismatch variations. If we assume that there is a threshold

voltage mismatch between M1 and M2 (ΔVTH), (2.26) can be rewritten as

I =
∆VTH + nVT ln(K)

RS

. (2.28)

If nVT ln(K) is 27 mV, ∆VTH and nVT ln(K) can be comparable, resulting in decreased accuracy

for I and ITC. On the other hand, when M1 and M2 are in the saturation region, ΔVTH can be

negligible ifΔVTH is much smaller than VGS2, which is generally true since M2 is in the saturation

region. Therefore, in many cases, nVT ln(K) in (2.28) should be as large as 100 mV as [16] shows,

leading to an excessively large area for RS.

[17–22] replace RS with a MOSFET in the triode or the saturation region. The currents gener-

ated from the circuits in [17, 19–21] all have the following relation.

I ∝ µV 2
T . (2.29)

Thus,

ITC = µTC + 2VT,TC . (2.30)

Since (2.30) does not have any design freedom, [22] exploits a threshold voltage difference be-

tween two transistors that have different sizes to add more design freedom in (2.30). However, if

the threshold voltage difference (17 mV) is comparable to the mismatch variations of the threshold

voltages, the temperature coefficient of the generated current from the circuit proposed in [22] can

be several hundreds ppm/°C as the measurement results in [22] show.
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2.2.3 Smartly Biased Current References

When a MOSFET is in the saturation region, there is a VGS bias voltage that sets the temperature

coefficient of the MOSFET drain current as zero [23]. The bias voltage is called “zero temperature

coefficient (ZTC) bias voltage” and can be derived from the square law shown below.

I =
1

2
µCOX

W

L
(VGS − VTH)

2 . (2.31)

The temperature coefficient of I is

ITC = µTC −
2VTH

VGS − VTH

VTH,TC . (2.32)

Since µTC and VTH,TC are negative values, ITC can be zero when the following equation holds.

VGS =

(
2VTH,TC

µTC

+ 1

)
VTH . (2.33)

When VTH is given by

VTH = VTH0 − γT, (2.34)

the temperature coefficient of VTH is

VTH,TC =
−γ
VTH

. (2.35)

From (2.4), (2.34), and (2.35), we have

VGS = VTH0 +
1

3
γT. (2.36)

As (2.36) shows, ideally VGS should be a PTAT voltage to set ITC as zero at all temperature. Smartly

biased current references generate the ZTC bias voltage and assign the bias voltage to an NMOS

or a PMOS current generator. [24] utilizes a bandgap voltage reference to generate a ZTC voltage.

15



On the other hand, [25] uses a nanowatt PTAT voltage generator for the same purpose.

One drawback of this approach is that ZTC bias voltages are sensitive to process variation.

In other words, the generated VGS should have the same process variation with VTH as (2.33)

shows. [25] proposes an all-PMOS PTAT voltage generator to generate a ZTC bias voltage that

tracks the VTH variation of a PMOS current generator. [26] utilizes a threshold voltage monitoring

circuit that outputs VTH0 of a MOSFET as a ZTC bias voltage generator. If the threshold voltage

of a current generator is the same with the threshold voltage of a MOSFET monitored, the current

generator can always have an appropriate bias voltage regardless of process variation.

The other drawback of this approach is that a MOSFET that is biased to generate a stable

current should be in the saturation region. As a result, generating a current smaller than 1 nA is

challenging when we consider the following equation.

VOV = VGS − VTH =

√
2I

µCOXW/L
. (2.37)

As (2.37) shows, W/L for generating 1 nA should be 1000 times smaller than W/L for 1 µA when

both cases have the same VOV. To avoid this issue, the circuit proposed in [27] uses a subthreshold

MOSFET as a current generator and produces a gate bias voltage for the current generator. Even

though the circuit generates a pA-range current with a small area, it has relatively low accuracy

because of the exponential relationship between VGS and the generated current.

2.2.4 Division-based Current References

Division-based current references generate a stable current by assigning a voltage to a resistor.

Fig. 2.5 shows one example of division-based current references [28, 29]. [28] utilizes a PTAT

voltage generator that consists of four subthreshold MOSFETs to generate VC. On the other hand,

[29] uses floating gates to generate a temperature-independent VC and a temperature-insensitive

resistance for R in Fig. 2.5. I can be written as

I =
VC

R
. (2.38)
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Figure 2.5: An example of division-based current references.

Thus,

ITC = VC,TC −RTC . (2.39)

Even though (2.38) includes only a division, division-based current references have enough design

freedom because a designer can choose VC,TC while designing the compensation voltage generator

in Fig. 2.5. One drawback of the circuits in [28,29] is that R should be very large when the circuits

generate a small current. For example, if VC is 100 mV, R should be 100 MΩ to generate 1 nA,

resulting in an excessively large area.

The circuit proposed in [30] reduces R to minimize the area of the circuit by generating a small

temperature-independent voltage. Since VC,TC is close to zero, ITC cannot be zero anymore. [31,32]

utilize MOSFET gate leakages to obtain large resistance with small area.

2.3 Performance Comparison Among Current Reference Types

Fig. 2.6 shows the measured performance of various current references and their types. In

Fig. 2.6, “ΔVBE” meansΔVBE-based current references. “BM-Sat” and “BM-Sub” indicate beta-

multiplier-based current references in the saturation region and in the subthreshold region, respec-
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Figure 2.6: Performance of five current reference types. (a) Generated reference current versus
total power consumption. (b) Generated reference current versus temperature coefficient.

tively. “SB” and “Div” stand for smartly biased current references and division-based current

references, respectively. Note that the number of current references shown in Fig. 2.6(a) is smaller

than the number of current references shown in Fig. 2.6(b). The reason for the difference is that

some articles do not report the power consumption of the current reference each article proposes.

The ΔVBE-based current references and the beta-multiplier-based current references in the

saturation region generate currents comparable to or higher than 1 µA. On the other hand, the

beta-multiplier-based current references in the subthreshold region, the smartly biased current ref-
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erences, and the division-based current references can generate nA-range or pA-range currents.

Especially, the smartly biased current references and the division-based current references have

better temperature coefficient than others in many cases as Fig. 2.6(b) shows when we compare

the references with other types of current references that provide comparable amounts of current.

In addition, if a current reference provides a small amount of current, the reference tends to con-

sume less power as Fig. 2.6(a) indicates. Therefore, circuit techniques that utilize smart biasing or

division are better choices than others to generate a small and accurate current over temperature

variations with low power consumption.

2.4 Conclusion

This chapter categorizes current reference circuits into four types and discusses the characteris-

tics of each type. This chapter also summarizes recent research on each type of current references

and shows a research trend. Smart biasing circuit techniques and division-based circuit techniques

are more promising than other circuit techniques since the two techniques can generate a smaller

and more accurate current over temperature variations with lower power consumption than others.
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3. AN ULTRALOW-POWER HIGH-ACCURACY CURRENT REFERENCE USING

AUTOMATIC CALIBRATION*

3.1 Motivation

A current reference circuit provides a stable bias current for many analog and mixed-signal

circuits despite process-voltage-temperature (PVT) variations. As a result, on-chip fully-integrated

current references have been researched to reduce a bill of materials and a form factor. Recently,

researchers pay attention to on-chip fully-integrated current references that can generate a small

current in a range of pA or nA because the Internet of Things (IoT) applications commonly require

a small bias current for ultralow-power circuits.

One challenge that makes designing the current references hard is a trade-off between the

power consumption and the accuracy of a current reference. Fig. 3.1 clearly demonstrates the

trade-off, using selected low-power current references that generate currents smaller than 1 µA

[20, 22, 25, 30–33]. Each axis of Fig. 3.1 represents one of three key characteristics of a current

reference: the amount of a generated current from a current reference, the temperature coefficient

of the generated current, and the total power consumption of the current reference. In Fig. 3.1(a),

the power consumption for generating a reference current tends to decrease as the reference current

decreases. However, a lower-power current reference results in a larger temperature coefficient

as Fig. 3.1(b) shows. In short, low power consumption compromises the accuracy of a current

reference. One way to relax the trade-off is utilizing a multiple-temperature trimming as [32]

and [30] show. However, a multiple-temperature trimming requires an additional post-fabrication

test setup, leading to an increased cost and a decreased production throughput.

[3] proposes a current reference that relaxes the tight trade-off with no help from a multiple-

temperature trimming. In the current reference, an automatic calibration circuit periodically cor-

rects the current generated from an ultralow-power current generator. After the calibration is fin-

*©2020 IEEE. Parts of this chapter are reprinted, with permission, from "A 1-nA 4.5-nW 289-ppm/°C Current
Reference Using Automatic Calibration", by Sanghoon Lee, Stephen Heinrich-Barna, Kyoohyun Noh, Keith Kunz,
and Edgar Sánchez-Sinencio, IEEE Journal of Solid-State Circuits.
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Figure 3.1: Performance of various current references. (a) Generated reference current versus
total power consumption. (b) Generated reference current versus its accuracy over temperature
variation. ©2020 IEEE.

ished, all circuit blocks for the calibration are powered off. If the temperature and the supply

voltage of the ultralow-power current generator change slowly, the calibration process does not

need to be activated frequently. Therefore, the proposed circuit can provide an accurate current

while consuming low average power.

This chapter discusses in detail about the current reference proposed in [3]. Section 3.2 in-

troduces the system-level architecture of the proposed current reference. Section 3.3 elaborates

the building blocks of the current reference. The accuracy of the proposed current reference is

analyzed in Section 3.4. A calibration algorithm and a calibration time frame are discussed in

Section 3.5. Current-providing mechanisms for load circuits are given in Section 3.6. Section 3.7

presents the measurement results of prototype chips. Finally, Section 3.8 makes a conclusion.

3.2 System-Level Architecture

The proposed current reference has three modes of operation: calibration mode, normal mode,

and sleep mode. In the calibration mode, the proposed circuit calibrates a small and inaccurate cur-

rent (IREF2) using a relatively large and accurate current (IREF1). In Fig. 3.2(a), the leakage-based

current digital-to-analog converter (IDAC) generates IREF2, while the high-power low-temperature-

coefficient on-chip current reference provides IREF1. The calibration mode is activated when fol-
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Figure 3.2: System-level architecture. (a) Block diagram. (b) Example waveforms of selected
signals when IREF1:IREF2=100.5:1. ©2020 IEEE.

lowing conditions are met: the active-high power-enable signals (PEN_I2T_HP, PEN_I2T_LP,

and PEN_ENGINE) are high, RST_I2T_HP is low, and RST_N_ENGINE is high. In these signal

names, I2T_HP means a current-to-time converter for the high-power current reference provid-

ing IREF1, whereas I2T_LP means a current-to-time converter for the low-power current generator

(IDAC) supplying IREF2. Additionally, ENGINE means the calibration engine in Fig. 3.2(a). In the

calibration mode, the proposed circuit first converts the two currents to time signals by charging

two capacitors: CR1 and CR2, where CR1=CR2=1.79 pF. Since IREF1 is larger than IREF2, the node

voltage at A (VA) rises more quickly than the node voltage at B (VB) as Fig. 3.2(b) shows. When VA

crosses VREF, a rising edge appears at the output of an auto-zeroed comparator Z1. The full-custom

logic detects the rising edge and subsequently produces various digital signals asynchronously: a

pulse signal to discharge CR1, a clock signal for the calibration engine, and other necessary signals
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to control Z1. The calibration engine counts the rising and the falling edges of the clock signal

derived from IREF1. Once CR1 is reset, IREF1 charges the capacitor again, and the proposed circuit

repeats the charging and discharging process until VB crosses VREF. A counter in the full-custom

logic counts the rising edge that appears at the output of the left-side comparator Z2, and the full-

custom logic resets CR2. Since the engine operates based on the clock generated from IREF1, the

engine detects the change in the counter value for IREF2 when the next rising edge of Z1 comes.

Therefore, in the case of Fig. 3.2(b), the engine calculates the measured current ratio between IREF1

and IREF2 as 101:1 by comparing the two counter values. The ratio can be considered the outcome

of a rounding-up because the actual ratio between the two currents is 100.5:1. When the engine ob-

tains the measured current ratio, it assigns to the IDAC a better input code that makes IREF2 closer

to IREF1/N based on its algorithm by changing the inputs of the IDAC (SC<8:0>, CC<8:0>, and

FC<8:0>). Since the IDAC consists of three separate arrays of binary-weighted leakage sources,

the three inputs control the leakage sources of each array in the IDAC. Afterwards, the engine

releases the reset signal for CR2. After trying multiple input code values for the IDAC, the engine

assigns 1’b1 to FINISH to indicate that the calibration process is complete. Additionally, it fixes a

final code value for IDAC. Through SPI<5:0>, the code value can be read or be written for testing

purposes. Furthermore, SPI<5:0> can set the target integer ratio between IREF1 and IREF2 (N).

After the calibration ends, the proposed circuit enters the normal mode. In the normal mode, all

circuits are powered off, except the IDAC, the current mirror, and the picowatt voltage reference in

Fig. 3.2(a), by assigning 1’b0 to PEN_I2T_HP, PEN_I2T_LP, and PEN_ENGINE. Since retention

flops [34] can maintain the input digital code for the IDAC, the IDAC can provide IREF2 through the

current mirror for other analog circuits as a reference/bias current, which equals to IREF1/N. Also,

the normal mode has significantly lower power consumption than the calibration mode thanks to

small IREF2 around 1 nA and a power gating technique [34] that minimizes leakages of digital

logics. If the other circuits do not need the reference/bias current anymore, the proposed circuit

moves to the sleep mode when all the PEN signals and RST_N_DIGENGINE are 1’b0, which sets

the input of IDAC as 27’b0. In the sleep mode, the entire circuit consumes the lowest energy.
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The calibration mode is turned on periodically to compensate IDAC’s output current deviation

caused by temperature and supply voltage variations. However, the proposed circuit remains en-

ergy efficient, since it spends most of its time in the normal mode or in the sleep mode with low

power consumption, whereas the calibration mode lasts for only a short time. In summary, the pro-

posed circuit creates a small and accurate current by relaxing the trade-off between the accuracy

and the power consumption of a current reference.

3.3 Building Blocks

3.3.1 Leakage-Based IDAC

The leakage-based IDAC in Fig. 3.3 consists of three arrays: a selector array, a coarse array, and

a fine array. Each array has a 9-bit digital input and produces a current as an output. The selector

array generates a wide-range current, whereas the coarse and the fine arrays provide sufficient

granularity in the range. Accordingly, the selector array has the largest one-least-significant-bit

current (ILSB). The ILSB of the coarse array is the second largest, and the ILSB of the fine array is the
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smallest. In the wide-range selector array, each medium-threshold (MVT) NMOS transistor that

has zero voltage difference between its gate and source supplies a large leakage current. A high-

votlage regular-threshold (HVRVT) NMOS transistor is selected as a switch above each MVT

NMOS transistor because its high threshold voltage allows only a small leakage when it is off.

Since the k-th MVT NMOS transistor from the right has a 2k times larger width than the width

of the rightmost transistor, the current controlled by SC<k> is 2k times larger than the current

handled by SC<0>. Consequently, the input to each array should be a binary-coded decimal to

get ideally-constant ILSB from the minimum input to the maximum. Unlike the leakage current

suppliers, the switches have a constant width up to the k-th switch from the right, whereas the

p-th switch from the right has a width equals to WUSW×2p-k, where p>k. Thanks to the constant

width, the area of the selector array can be reduced. The other arrays have the same structure as the

selector array. Meanwhile, to generate leakage currents that have various scales, they use different

types of NMOS transistors as leakage sources: regular-threshold (RVT) NMOS transistors for the

coarse array and HVRVT NMOS transistors for the fine array.

The sizes of the leakage sources in the three arrays are determined based on four requirements.

First, the maximum current of the selector array should be larger than the current that the IDAC

provides (IREF1/N). Second, the ILSB of the selector array should be smaller than the maximum

current of the coarse array. Third, the ILSB of the coarse array should be smaller than the maximum

current of the fine array. Lastly, the ILSB of the fine array should be smaller than 0.1 % of IREF1/N

to minimize a quantization error. The second and the third requirements are intended for calibra-

tion accuracy through current redundancies between the arrays. When 1-LSB increase in the input

code affects more than two arrays simultaneously, the IDAC has negative differential nonlinearity

(DNL) smaller than -1 due to the redundancies. For example, the current generated from a setting,

SC<8:0>=9’h000 and CC<8:0>=FC<8:0>=9’h1FF, is larger than the current produced from a

setting, SC<8:0>=9’h001 and CC<8:0>=FC<8:0>=9’h000. The redundancy prevents calibra-

tion accuracy degradation by canceling positive DNL that might occur from current mismatches

between the arrays. Mismatches between the leakage sources in an array can be alleviated by
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utilizing large area for the sources.

Two factors determine the k value and the sizes of the HVRVT switches. If k=0 for an array

and there is no mismatch between transistors in the array, VDS of on-state switches are uniform

because the resistance of an on-state switch is scaled in inverse proportion to the amount of the

current flowing through the switch. As a result, the array has small DNL due to the uniform drain

voltage of its leakage sources. In other words, k can be increased to reduce area as long as the value

does not harm the second, the third, and the forth design criteria for leakage sources. Additionally,

the sizes of the switches are decided to have a total leakage current of an array smaller than the

1-LSB current of the array when all switches in the array are off. The transistor sizes are shown

as follows: WU=4 um, LU=5 um, WUSW=3 um, LUSW=0.35 um, and k=5 for the selector array;

WU=0.6 um, LU=19.9 um, WUSW=0.22 um, LUSW=5 um, and k=6 for the coarse array; WU=4 um,

LU=4 um, WUSW=0.22 um, LUSW=20 um, and k=6 for the fine array.

3.3.2 Current-to-Time Converters

The same two auto-zeroed [35] unbalanced-current-starved-inverter-based comparators con-

vert IREF1 in Fig. 3.2(a) to a time signal. Fig. 3.4(a) shows the two comparators. Each comparator

has two operation phases: a sampling phase and a tracking phase. In the sampling phase, the

comparator samples the switching threshold voltages [36] of the two unbalanced current-starved

inverters (VST1, VST2). C1 stores the voltage difference between the reference (VREF) and the switch-

ing threshold of the first inverter because VSP1=VST1. In addition, C2 keeps VSP1-VSP2, where

VSP2=VST2. In the tracking phase, the comparator acts as an offset-canceled comparator. When V IN

reaches VREF, the input (and the output) voltage of the first inverter ideally equals to VST1 regard-

less of PVT variations because of the voltage sampled in C1. Likewise, the input (and the output)

voltage of the second inverter is ideally VST2 when V IN reaches VREF. Therefore, the switching

threshold of the comparator is VREF regardless of VST1 and VST2. Each inverter in the comparator

consumes 400 nA and has a 32-dB DC gain (27 °C, TT) at its switching threshold. Two current

mirrors generate the bias voltages for each comparator. The high-power accurate current reference

in Fig. 3.2(a) provides a bias current for the current mirrors. The hysteresis buffer [36] in the
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Figure 3.4: Current-to-time converter for IREF1. (a) Schematic. (b) Timing diagram. ©2020 IEEE.

comparator suppresses possible glitches caused by noise.

Each current-starved inverter in Fig. 3.4(a) has only one NMOS (or PMOS) current source.

Accordingly, VST1 is higher than VREF, whereas VST2 is lower than VST1. These high and low

switching thresholds ensure that VTP1 is always higher than the ground and VTP2 is always lower

than the supply voltage in the tracking phase, although V IN and VO1 start from the ground and near

the supply voltage respectively. For example, a balanced current-starved inverter that has a PMOS

current source (W=2.4 µm, L=19 µm) and an NMOS current source (W=1 µm, L=19 µm) can have

a switching threshold ranging from 515 mV to 863 mV at 80 °C in the FF corner case when the

supply voltage is 1.5 V and when there are bias current mismatches smaller than ±10 % between

the two current sources. With the same temperature, corner case, supply voltage, and bias current

mismatch conditions, the unbalanced current-starved inverter has a switching threshold ranging

from 1.12 V to 1.13 V. Since VREF is 610 mV in the FF corner case, the balanced current-starved
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inverter samples -95 mV on C1 in the sampling phase when the switching threshold of the inverter

is the minimum. On the other hands, the unbalanced current-starved inverter stores 510 mV on

C1. Accordingly, the maximum voltage differences between the two nodes of SW1 in the tracking

phase are 1.60 V and 0.99 V for the balanced and unbalanced current-starved inverters respectively.

Although the unbalanced current-starved inverter uses a PMOS-only switch for SW1, the balanced

inverter cannot use the same switch because of its high on-resistance when the switching threshold

of the inverter is the lowest. Instead, a transmission gate (W=0.25 µm, L=0.5 µm for both of tran-

sistors) is utilized considering that the switching threshold of the inverter has high variability. The

length of the transmission gate is selected to closely match the on-resistance of the transmission

gate (1.81 MΩ) with that of the PMOS-only switch (1.74 MΩ) when both of the inverters are in

the sampling phase at 27 °C in the TT corner case. Both switches have the minimum width to

minimize the capacitance seen at the drain or source of each transistor. Unlike the unbalanced

current-starved inverter, the balanced inverter does not have dummy switches (DSW1 and DSW2)

because a PMOS in the transmission gate can cancel the charge injection of an NMOS in the trans-

mission gate without dummy switches. Under this circumstance, the unbalanced current-starved

inverter has 65.6 fA leakage through SW1 when the tracking phase starts, whereas the balanced

inverter has 26.8 pA leakage.

Due to the small leakage, the unbalanced-starved-inverter-based comparator can have a small

offset after the auto zeroing. The offset can be quantified by measuring the difference between

two voltages: sampled voltage on C1 (and C2) in the sampling phase; actual voltage on C1 (and

C2) in the tracking phase when the input of the frist (and the second) inverter in the comparator

reaches the switching threshold of the inverter. The comparator based on the unbalanced inverters

in the current-to-time converter for IREF1 has 67 µV and -10 µV offsets on C1 and C2 respectively

(30 °C, FF). However, the comparator based on the balanced inverters has a -462 µV offset on

C1 and a 496 µV offset on C2. The total input-referred offsets of the comparators are 67 µV and

-450 µV respectively considering that the offset on C2 is divided by the gain of the first inverter.

Temperature variations of the offsets are 111 µV and 94 µV respectively from -20 °C to 80 °C.
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If the current-to-time converter for IREF2 utilizes the same comparators, the effect of the leakage

on the comparator offset can be more prominent because the comparators stay in the tracking

phase longer than the comparators in the current-to-time converter for IREF1. The balanced-starved-

inverter-based comparator in the converter for IREF2 has a -2.9 mV offset (80 °C, FF). Since the

temperature variation of the offset is 2.9 mV and VREF is 610 mV, the temperature-dependent offset

can increase the temperature coefficient of IREF2 by at most 47.5 ppm/°C. However, the unbalanced-

starved-inverter-based comparator has a 290 µV offset (80 °C, FF). The temperature variation of

the offset is 102 µV, resulting in at most 1.7 ppm/°C temperature coefficient degradation of IREF2.

Another benefit of employing the unbalanced current-starved inverter is to provide a large

bandwidth with a fixed current budget. When the unbalanced inverter is loaded with a replica

inverter, it has a 2.7-MHz 3-dB bandwidth at its switching threshold (27 °C, TT, 1.8 V), whereas

the balanced inverter has a 17-KHz bandwidth with the same current budget (400 nA). This is

because the balanced inverter has a large output resistance due to the cascoded transistors. When

the supply voltage is 1.8 V and there is no bias current mismatch, the worst delay of the balanced-

starved-inverter-based comparator is 4.24 µs (80 °C, FF), whereas that of the unbalanced-starved-

inverter-based comparator is 225 ns (-20 °C, SS). Due to the long delay of the balanced-starved-

inverter-based comparator, moving to the sampling phase from the tracking phase is delayed after

V IN exceeds VREF. As a result, the input and the output voltages of each inverter deviate largely

from the switching threshold of the inverter, resulting in huge settling errors on C1 and C2 in the

sampling phase. When the current-to-time converter for IREF1 utilizes the two types of inverters,

the worst settling error of the unbalanced inverter is 25.2 µV on C1 (80 °C, SF). The temperature

variation of the settling error is 21.5 µV, resulting in at most 0.35 ppm/°C temperature coefficient

degradation of IREF1. However, the balanced inverter shows a 40.5 mV settling error on C1 in the

worst case (-20 °C, FF), and its temperature variation is 11.3 mV, leading to at most 185 ppm/°C

temperature coefficient degradation of IREF1.

The full-custom digital logic in Fig. 3.4(a) generates a differential clock signal from the outputs

of the comparators and provides asynchronous control signals for the comparators. Fig. 3.4(b)
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represents the timing diagram of the asynchronous control signals. When SW5 is disconnected,

IREF1 charges CR1, and V IN rises from the ground. After a charging time (TC1), V IN crosses VREF,

and the upper-side comparator (1S) flips its output after the delay of the comparator (TCD1). A 1-bit

counter in the full-custom logic detects the falling edge of OUT_1S and changes the polarities of

its outputs, SEL1S and SEL2S. After a short logic delay TLD11, SW5 starts discharging CR1, and

SW3 in 1S breaks the connection between CR1 and C1. Additionally, the full-custom logic sets

PEN_1SBUF as 1’b0 to power off the hysteresis buffer in 1S. 1S is in the sampling phase after

an additional delay TLD12 because SW1 and SW2 are enabled. A non-overlapping signal generator

produces two signals, P1_2S and P2_2S, with delays TLD13 and TLD14. As a result, 2S is in the

tracking phase after TLD13+TLD14. At the same time, the full-custom logic enables the hysteresis

buffer in 2S. In short, the full-custom logic completes the process that interchanges the phases

of operation between 1S and 2S in TLD11+TLD12+TLD13+TLD14. However, the full-custom logic

needs a long delay (TLD15) before charging CR1 again because discharging CR1 takes longer than

TLD12+TLD13+TLD14. Unlike the other delays, which static logic gates generate, a dynamic logic

provides TLD15 by discharging its MOS capacitor with a constant rate using a current from the

high-power accurate current reference in Fig. 3.2(a). Once the full-custom logic disconnects SW5,

the same process is repeated. The only difference is that 1S and 2S start from the sampling phase

and the tracking phase respectively. Accordingly, the 1-bit counter in the full-custom logic detects

the falling edge of OUT_2S when V IN goes across VREF. Afterwards, the full-custom logic first

changes the control signals for 2S to move 2S to the sampling phase. 1S enters the tracking phase

later.

The current-to-time converter for IREF2 shown in Fig. 3.5 utilizes the same type of the compara-

tor used for IREF1. All devices in the comparator for IREF2 have the same sizes with the devices in

the comparator for IREF1 except the sizes of the dummy switches (DSW1 and DSW2) in Fig. 3.4(a).

There are two major differences between the two converters. First, the comparator in the converter

for IREF2 is controlled by PRESET and RST from the calibration engine in Fig. 3.2(a). Second, the

converter for IREF2 uses only one comparator because it does not need to generate a clock signal.
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Figure 3.5: Current-to-time converter for IREF2. ©2020 IEEE.

The operation of the converter is synchronized with the clock generated from the converter for

IREF1. When V IN crosses VREF, the comparator drives OUT to 1’b0 after TCD2. A 1-bit counter

activated by the falling edge of OUT assigns 1’b1 to its output, DONE after TLD2. In addition, the

full-custom logic in the converter generates control signals to discharge CR2 and to move the com-

parator to the sampling phase. In the next clock cycle, the calibration engine receives the DONE

signal and changes PRESET and RST to 1’b1, which resets DONE. After the calibration engine

computes the ratio between the two currents (IREF1 and IREF2) and assigns a better input code to the

IDAC, the engine changes PRESET to 1’b0, which moves the comparator to the tracking phase. In

the next clock cycle, the engine sets RST as 1’b0, and IREF2 starts charging CR2 again.
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3.3.3 Other Building Blocks

The high-power low-temperature-coefficient current reference in Fig. 3.2(a) has the same system-

level architecture proposed in [28]. However, the reference has four major differences, compared

to the circuit introduced in [28]. First, the reference utilizes a P+ poly resistor instead of a N+ poly

resistor. Since the P+ poly resistor in the 180 nm technology has a lower temperature coefficient

and a larger sheet resistance than the N+ poly resistor, the reference can generate a stable 100 nA

current, while consuming small area. Second, the reference uses a picowatt complementary-to-

absolute-temperature (CTAT) voltage generator to provide the compensation voltage for the resis-

tor. The CTAT voltage generator has the same circuit structure proposed in [37]. The dimension

of each MOS is tuned to generate a CTAT voltage [38]. Since the CTAT voltage generator has a

line sensitivity better than 0.47 %/V even in the worst corner case (SF, 80°C), the reference does

not need the bandgap regulator utilized in [28]. Third, the reference uses a self-biased one-stage

op-amp to assign the CTAT voltage to the resistor. A leakage source provides a bias current for the

op-amp. The op-amp has a 60-dB DC gain and consumes 1.2 nA at 27 °C in a power-on mode.

Lastly, the reference has a power-off mode, where the entire circuit consumes 92.3 pA at 27 °C

in the worst corner case (FF). The picowatt voltage reference proposed in [37] provides VREF in

Fig. 3.2(a), which is 557.6 mV in the TT corner case. The voltage buffer for the voltage reference

is implemented by utilizing a one-stage op-amp. The high-power accurate current reference in

Fig. 3.2(a) supplies a bias current for the op-amp.

3.4 Accuracy Analysis

There are six nonidealities in the proposed current reference as below.

1. Leakages that create a current difference between IREF1 (or IREF2) and the actual current that

charges CR1 (or CR2).

2. Comparator offsets in the current-to-time converters.

3. Nonzero V IN in Fig. 3.4 and Fig. 3.5 when IREF1 and IREF2 start to charge CR1 and CR2
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respectively.

4. Delays of the comparators and the digital logics in the current-to-time converters.

5. Nonzero temperature coefficients of VREF, CR1, and CR2.

6. A finite resolution of IDAC (quantization error).

For a convenient analysis on how the nonidealities impact on the accuracy of the proposed current

reference, the first three nonidealities are referred to VREF. Consequently, VREF in Fig. 3.4 and

Fig. 3.5 can be rewritten as VREF+α and VREF+β respectively. α is a VREF-referred error that comes

from the first three nonidealities in the current-to-time converter for IREF1. β is also a VREF-referred

error from the same nonidealities in the current-to-time converter for IREF2. If we substitute VREF+β

with VREF2, VREF+α=VREF2+γ, where γ=α-β. The analysis can start from the following equation,

which can be established after the calibration engine finishes its algorithm.

TC2 + TCD2 + TLD2 +Q = N × (TC1 + TCD1 + TLD1). (3.1)

TC1 and TC2 are time periods for IREF1 and IREF2 to charge CR1 and CR2 from ground to VREF2+γ

and VREF2 respectively. TCD1 and TLD1 are the delay of the comparators and the summation of the

logic delays (
∑

TLD1i) respectively in the current-to-time converter for IREF1. TCD2 and TLD2 are the

delay of the comparator and the clock-to-q delay of the 1-bit counter respectively in the current-

to-time converter for IREF2. N is a target ratio between IREF1 and IREF2. Q is a time error that

comes from a finite resolution of IDAC. From (3.1), (3.2) can be derived by using two relations:

TC1=CR1(VREF2+γ)/IREF1 and TC2=CR2VREF2/IREF2.

IREF2 ∼
IREF1

N

(
1− γ

VREF2

− TD1 − TD2/N −Q/N

TC1 − ϵ

)
. (3.2)

In (3.2), TD1=TCD1+TLD1, TD2=TCD2+TLD2, and ε=CR1γ/IREF1.

The error ranges in Table 3.1 can simplify (3.2). According to Table 3.1, the maximum value

of α is 5.71 mV, whereas the minimum value of β is 1.69 mV. Consequently, the upper bound of γ
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Table 3.1: Ranges of Errors From the Circuit Nonidealities (-20 °C ~ 80 °C; TT, FF, SS, FS, and
SF corner cases with mismatches; 1.8 V). ©2020 IEEE.

Error Min Max
Charging current error in the current-to-time converter for
IREF1 (VREF-referred)

3.29 mV 5.66 mV

Comparator offset in the current-to-time converter for IREF1

(VREF-referred)
-137 µV 120 µV

Error from nonzero V IN when IREF1 starts to charge CR1

(VREF-referred)
-113 µV -69 µV

Charging current error in the current-to-time converter for
IREF2 (VREF-referred)

2.10 mV 4.08 mV

Comparator offset in the current-to-time converter for IREF2

(VREF-referred)
-388 µV 183 µV

Error from nonzero V IN when IREF2 starts to charge CR2

(VREF-referred)
-15 µV 41 µV

TD1 120 ns 256 ns
TD2 375 ns 1073 ns
TD1/TC1 @ 30 °C 0.015 0.020
Q (ILSB of IDAC < 0.1 % of a target current) 0 0.001*TC2

is 4.01 mV, which is 0.78 % of VREF when VREF is the minimum (461.8 mV in the SF corner case).

Therefore, TC1-ε can be approximated by TC1 because the upper bound of ε/TC1 (=γ/(VREF2+γ))

is 0.78 % considering that VREF2+γ is larger than VREF. From (3.2), the temperature coefficient

of IREF2 can be derived with an equation IREF2,TC=(1/IREF2)×(∂IREF2/∂T). Afterwards, the derived

equation can be simplified as below in that TD1/TC1 is much larger than (TD2+Q)/NTC1 when N=100

as Table 3.1 shows.

IREF2,TC = (1− 2TD1/TC1 − γ/VREF2)× IREF1,TC

− (1/TC1)(∂(TD1 − TD2/N −Q/N)/∂T )

− (1/VREF2)(∂γ/∂T )

+ (γ/VREF2)VREF2,TC

+ (TD1/TC1)((VREF2 + γ)TC + CR1,TC). (3.3)

T is temperature. IREF1,TC, VREF2,TC, (VREF2+γ)TC, and CR1,TC are the temperature coefficients of
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Table 3.2: Temperature Coefficient Ranges (µ± 3σ) of the Circuit Nonidealities. ©2020 IEEE.

Items
TT (ppm/°C) FF (ppm/°C) SS (ppm/°C) FS (ppm/°C) SF (ppm/°C)
Min Max Min Max Min Max Min Max Min Max

Charging current error in the current-to-
time converter for IREF1

3.81 3.90 4.29 4.65 3.47 3.54 3.39 3.52 3.75 4.14

Comparator offset in the current-to-time
converter for IREF1

0.99 2.02 1.38 2.24 0.87 1.65 0.76 1.47 1.10 2.65

Error from nonzero V IN when IREF1 starts
to charge CR1

0.48 0.56 0.43 0.53 0.55 0.64 0.43 0.49 0.56 0.67

Charging current error in the current-to-
time converter for IREF2

2.25 4.26 1.11 10.40 2.31 2.78 1.90 5.12 2.36 3.65

Comparator offset in the current-to-time
converter for IREF2

3.17 3.62 4.03 5.49 2.77 3.00 2.59 2.93 3.95 4.58

Error from nonzero V IN when IREF2 starts
to charge CR2

0.01 0.04 0.08 0.14 0.04 0.07 0.03 0.06 -0.01 0.02

(1/TC1)× (∂TD1/∂T ) 1.23 2.80 0.85 3.20 0.81 3.47 1.59 3.50 2.93 6.08
(1/NTC1)× (∂TD2/∂T ) 2.17 2.66 2.78 4.20 2.44 2.68 1.96 2.34 2.39 3.07
(1/NTC1)× (∂Q/∂T ) 0.00 10.00 0.00 10.00 0.00 10.00 0.00 10.00 0.00 10.00
Summation of the above temperature
coefficients (upper bound) 14.12 29.87 14.95 40.84 13.26 27.83 12.65 29.43 17.04 34.85

VREF 26.64 30.44 23.33 27.69 38.82 42.33 28.14 32.64 13.68 23.34
VREF2+γ (VREF+α, upper bound) 31.92 36.93 29.43 35.11 43.70 48.16 32.72 38.12 19.09 30.79
VREF2 (VREF+β, upper bound) 32.08 38.36 28.55 43.71 43.93 48.17 32.67 40.75 19.99 31.58

IREF1, VREF2, VREF2+γ, and CR1 respectively.

The accuracy of the proposed current reference can be analyzed based on (3.3). According to

Table 3.1, the maximum value of TD1/TC1 is 0.02. Furthermore, the upper bound of γ/VREF2 is

0.0078 as discussed earlier. As a result, the minimum bound of the first term in (3.3) is 95.2 %

of IREF1,TC. (3.3) can be further simplified by using the simulation results in Table 3.2, which

summaries the temperature coefficient ranges of each nonidealities based on 50 Monte-Carlo mis-

match simulations at each temperature and each corner case when the supply voltage is 1.8 V. In

Table 3.2, an addition of the temperature coefficients of the first three items to the temperature

coefficient of VREF results in the upper bound of the temperature coefficient of VREF2+γ, provided

that the temperature variations do not cancel each other. The upper bound of the temperature co-

efficient of VREF2 can be obtained in the same way by adding the temperature coefficients of the

VREF-referred nonidealities in the current-to-time converter for IREF2 to the temperature coefficient

of VREF. Although the maximum value of VREF2,TC is 48.17 ppm/°C, the value is scaled by γ/VREF

in (3.3), leading to 0.38 ppm/°C. Likewise, the maximum values of (TD1/TC1)×(VREF2+γ)TC and
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(TD1/TC1)×(CR1,TC) are 0.96 ppm/°C and -0.59 ppm/°C respectively. Accordingly, the last two

terms in (3.3) can be neglected. The second and the third terms in (3.3) are the major sources of

the error that makes a difference between IREF1,TC and IREF2,TC. Although the two terms have ex-

plicit negative signs, IREF2,TC can be larger than IREF1,TC, depending on the polarities of ∂IREF1/∂T,

∂TD1/∂T, ∂TD2/∂T, ∂Q/∂T, and ∂γ/∂T at each temperature. To calculate an upper bound of the

difference between IREF1,TC and IREF2,TC, the absolute values of the second and the third terms are

added to the first term. For the same reason, the second and the third terms are evaluated by

adding the temperature coefficients of related items in Table 3.2. IREF2,TC can be degraded up to

40.84 ppm/°C, compared to IREF1,TC when the 1-LSB current of IDAC is less than or equal to 1 pA.

3.5 Calibration Algorithm and Time Frame

As discussed in Section 3.2, the calibration engine selects a better code for the leakage-based

IDAC based on its algorithm. The algorithm used in this paper is a binary search algorithm. Since

the algorithm requires only 27 iterations when the IDAC has a 27-bit input, the engine can finish the

calibration quickly while it does not sacrifice the accuracy of the calibration. Fig. 3.6(a) illustrates

the binary search algorithm using a simple example, where the IDAC only has a 3-bit input. The

horizontal axis represents the 3-bit input of the IDAC, whereas the vertical axis stands for the

output current of the IDAC (IREF2). To prove that the algorithm works well even when there are

current redundancies between arrays as explained in Section 3.3.1, it is assumed that there is a

current overlap between the most significant bit (MSB) and the last of the bits in the example.

The algorithm starts from the MSB and tries 1’b1 for the MSB. In this example, it assigns

3’b100 to the IDAC and waits for 100 clock cycles, which take around 2 ms, to settle the output

current of the IDAC. Afterwards, the algorithm changes PRESET and RST in Fig. 3.5 to 1’b0. A

counter in the calibration engine counts the rising and the falling edges of the clock until DONE in

Fig. 3.5 equals to 1’b1 or until the value of the clock counter reaches N+4. The algorithm regards

the value of the clock counter as a measured ratio between IREF1 and IREF2 (RMEAS). If RMEAS is

larger than N, the algorithm sets the bit that it focuses on as 1’b1. Otherwise, it fixes the bit as

1’b0. In this example, IREF2 is smaller than IREF1/N, which means RMEAS is larger than N. For
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Figure 3.6: Operation of the automatic calibration. (a) Algorithm (binary search). (b) Time frame.
©2020 IEEE.

that reason, the algorithm chooses 1’b1 for the MSB. Subsequently, the algorithm tries 1’b1 for

the next MSB and assigns 3’b110 to the IDAC. After following the same process, the algorithm

obtains RMEAS smaller than N. In the end, it sets the second MSB as 1’b0 and moves to the next

MSB. The algorithm repeats the same process until it determines the least significant bit (LSB). In

this example, the finial code value is 3’b100.

In Fig. 3.6(a), the intermediate calibration result converges to the ideal value (IREF1/N) as the

algorithm proceeds. Even when RMEAS equals to N, the algorithm keeps reducing its intermediate
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calibration result to get better accuracy instead of stopping the process. Since the actual current

ratio (RACT) is always smaller than or equal to RMEAS as mentioned in Section 3.2, IREF2 should

be reduced until RACT is larger than N. Therefore, the intermediate calibration result converges to

one of the points that have a difference between IREF1/N and IREF2 (IERROR) smaller than ILSB. The

current overlap between the MSB and the LSBs does not affect the accuracy of the calibration as

Fig. 3.6(a) shows.

Fig. 3.6(b) shows a time frame for the operation of the proposed current reference. When the

proposed circuit moves to the calibration mode, all circuit blocks for the calibration are powered

on. It takes time for all node voltages and currents to settle down before the calibration starts.

Simulation results show that 200 ms are enough to acquire a settling accuracy better than 0.33 %

even in the worst case (SS, -20 °C). Since a calibration error caused by the finite settling accuracy is

smaller than 1 pA in simulations, the actual calibration can start after 200 ms. Since each chip can

have a different clock frequency due to the process variations of IREF1, the required calibration time

varies by chip. In the TT corner case, it takes approximately 3 ms for the algorithm to determine

the correct value for one bit. Therefore, the entire calibration spends about 81 ms (3 ms×27).

Even in the worst corner case (SS), the algorithm completes the entire calibration within 100 ms.

Overall, one calibration takes 300 ms or shorter. Based on the calibration time needed, the total

power consumption of the proposed circuit can be calculated like below when the calibration mode

is activated every 5 minutes and when the proposed circuit is in the normal mode between two

calibration trials.

Power consumption of the proposed current reference = x/1000 + y×999/1000. (3.4)

x is the power consumption in the calibration mode, and y is the power consumption in the normal

mode. As (3.4) indicates, the power consumption in the calibration mode is reduced by 1000 times.

It can go down further if the calibration mode is activated less frequently than every 5 minutes.
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Figure 3.7: Current-providing mechanism for always-on load circuits. ©2020 IEEE.

3.6 Current-Providing Mechanism

When an application needs a continuous current with no interruption for always-on circuits, two

IDACs (IDAC0 and IDAC1), two current mirrors (MIR0 and MIR1), and four switches (SW0~SW3)

can be utilized for the purpose as Fig. 3.7 shows. Since the load circuit is always on, the digital

power-down signal (PDN) is always 1’b0 except when the load circuit is turned on for the first

time. If EN0=1’b1, IDAC0 supplies a current to the potential load circuit through MIR0, whereas

IDAC1 provides a current for the current-to-time converter through MIR1. Since a 27-bit latch

(LAT0) holds the input signals of IDAC0 (SC0, CC0, and FC0), I0 can be supplied continuously

in the sleep mode and in the calibration mode of the current reference. In the calibration mode,

the calibration engine calibrates the current of IDAC1 by controlling the inputs of IDAC1 through

the demux and LAT1. When the calibration is complete, the engine assigns 1’b1 to FINISH.

Accordingly, EN0 and EN1 change their polarities. As a result, IDAC1 takes over the role of

supplying a current to the potential load circuit. The input signals of IDAC0 are set as 9’d0 when
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the proposed current reference goes to the sleep mode again.

CLP0 and a low-pass filter that consists of RLP and CLP1 in Fig. 3.7 can minimize the effect of the

switching activities of SW0~SW3 on the accuracy of I1 as proposed in [39]. From the simulation

results, the worst-case peak-to-peak fluctuation of I1 is 0.9 fA (SS, -20 °C) when a replica of the

diode-connected PMOS devices in MIR0 is connected to the drain of M1. The calibration activities

for IDAC0 or IDAC1 also do not affect the accuracy of I1 significantly. When 1 nA from IDAC0

or IDAC1 charges CR2 during 1 ms and when the full-custom logic in Fig. 3.2(a) discharges CR2 to

ground after 1 ms, the worst-case peak-to-peak fluctuation of I1 is 0.2 fA (TT, 80 °C). If the input

code value of IDAC0 or IDAC1 changes from the minimum code to the maximum code or from

the maximum to the minimum in the calibration mode, the worst-case peak-to-peak fluctuation of

I1 is 35.0 fA (FS, 80 °C).

If the proposed current reference provides a current for duty-cycled circuits, IDAC1, MIR1,

SW2, SW3, and the logics on the bottom of Fig. 3.7 are not necessary. Instead, a d-type retention

flip flop can enable SW1 and disable SW0 by storing 1’b1 on its output at a rising edge of FINISH.

Since the flip flop maintains its output until RST_N_DIGENGINE goes low, SW1 can connect MIR0

to the duty-cycled load circuit in the normal mode. Afterwards, PDN can be set as 1’b0 to wake

up the load circuit. The worst-case 0.1 % settling time of I1 is 29.1 ms (SS, -20°C). The calibration

mode can be activated during the time when PDN is 1’b1. If there is a ±10 mV variation on the

supply voltage, the worst-case fluctuation of I1 at 1 Hz is±0.6 pA (SS, -20 °C) when an ac ground

is connected to the drain of M1. From 1 Hz to 100 MHz, the worst-case maximum variation of I1

is ±10.5 pA. The integrated noise of I1 from 1 Hz to 100 KHz is 1.8 pArms in the worst case (FF,

80 °C). 86 % of the integrated noise power comes from the thermal noise of M1.

3.7 Measurement Results

3.7.1 Static Accuracy

Prototype chips are fabricated using a 180 nm CMOS technology. 10 chips, which come from

three different wafers in one lot, are tested. Each chip is evaluated in a temperature range having
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Figure 3.8: Effect of the automatic calibration on the generated reference current. ©2020 IEEE.

20 °C steps from -20 °C to 80 °C when the supply voltage is 1.8 V. When the current reference is in

the normal mode after calibration, it is assumed that the temperature of the circuit is stable enough

to evaluate the static accuracy of the current reference at each temperature. The dynamic accuracy

of the current reference is discussed in Section 3.7.2. The static accuracy of each chip is also

measured at three different supply voltages when the temperature is 20 °C: 1.5 V, 1.8 V, and 2.0 V.

32 automatic calibrations at each temperature and each supply voltage lead to a noise-averaged

calibration result, suppressing calibration noise, which is a part of dynamic accuracy of the current

reference. For the testing purpose, a Field Programmable Gate Array (FPGA) board initiates each

calibration by releasing the reset signals (RST_I2T_HP and RST_N_ENGINE) in Fig. 3.2(a). When

the board receives the finish signal (FINISH) from a chip being tested, the board reads a digital

code for the IDAC and initiates the next automatic calibration after 1 ms. After 32 calibrations, a

median code among the first 31 records is selected. The generated reference current is measured

after the median code is externally assigned to the IDAC by the FPGA board.

Fig. 3.8 shows a generated reference current measured from one sample chip. When the auto-

matic calibration is not activated at each temperature, the generated current shows 1160 % variation
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Figure 3.9: Accuracy of the generated reference current after the automatic calibration when N=86.
(a) Accuracy over process and temperature variation. (b) Accuracy over process and supply voltage
variation. ©2020 IEEE.

from the current at 20 °C. The reason for the large variation is that the input code for the IDAC is

not adjusted depending on the temperature change. However, the generated reference current only

has 1.57 % variation from the current at 20 °C after the automatic calibration is performed at each

temperature. Therefore, this result proves that the entire calibration circuit works effectively from

-20 °C to 80 °C.

The accuracy of the generated reference currents (IREF2) over PVT variation can be checked

from Fig. 3.9(a) and Fig. 3.9(b). All measured results in the figures are obtained without a chip-

to-chip (and wafer-to-wafer) trimming. Each dot represents a temperature coefficient or a line

sensitivity of each chip when the automatic calibration is activated at each temperature and supply

voltage. On average, the generated reference current has 1.825 % variation in the 100 °C temper-

ature range, which is equivalent to 182.5 ppm/°C. All temperature coefficients from 10 chips are

in the range from 127.4 ppm/°C to 237.8 ppm/°C. The average temperature coefficient of IREF1

is 156.1 ppm/°C. The average difference between IREF1,TC and IREF2,TC is 26.4 ppm/°C, which is

smaller than the upper bound analyzed in Section 3.4. The average line sensitivity of the generated
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reference current is 1.4 %/V, which is 0.7 % variation from 1.5 V to 2.0 V. All line sensitivities

from the 10 chips are spread in the region from 0.4 %/V to 2.7 %/V.

Fig. 3.10 represents the statistics of measured reference currents (IREF2) at 20 °C when the au-

tomatic calibration is activated at the temperature. As the red bars show, 25 chips have ±3.78 %

variation (±3σ/µ) when N is 86 for all chips and when no chip-to-chip (or wafer-to-wafer) trim-

ming is applied. However, the spread decreases to ±0.75 % (blue bars) if each chip is trimmed

at room temperature. The trimming is accomplished with the largest N, which makes the auto-

calibrated reference current larger than 1 nA. Since the trimming changes only N and since the

auto-calibrated reference current monotonically increases as N decreases, we can finish the trim-

ming process quickly without using complex algorithms. Among 25 chips, 10 chips are fully

evaluated from -20 °C to 80 °C. As Fig. 3.11(a) and Fig. 3.11(b) indicate, the trimming process

does not profoundly affect the temperature coefficient of the reference current. In addition, the

proposed circuit can generate various amounts of a reference current by changing N as Fig. 3.12
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Figure 3.11: Auto-calibrated reference current before and after room-temperature trimming. (a)
Spread of 10 sample chips from -20 °C to 80 °C before room-temperature trimming. (b) Spread of
10 sample chips from -20 °C to 80 °C after room-temperature trimming. ©2020 IEEE.

shows.

3.7.2 Dynamic Accuracy

In case the proposed current reference is in the normal mode for a long time (e.g. 25 minutes),

changes in temperature and supply voltage during the time can affect the accuracy of the generated

current. Two factors can cause temperature variations: ambient temperature change and on-die

thermal conduction. According to [40], the average diurnal air temperature range in the United

States in 2012 is 13.5 °C. If we assume that the temperature change occurs for 12 hours from

early morning to late afternoon, the rate of the temperature change is approximately 0.1 °C per 5

minutes. In Nevada, where there are many deserts, diurnal air temperature ranges do not normally

exceed 20 °C as [41] shows. Even when daily record high and low occur on the same day,

diurnal temperature ranges are around 33 °C [42], which is approximately 0.1 °C change for 2.5

minutes. However, indoor temperature variation rates are much smaller than the rate of 0.1 °C

per 5 minutes. [43] shows daily indoor temperature profiles during two seasons in three different

climate regions. In the cooling season (from May to September for Florida homes and from June to
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Figure 3.12: Generated reference current for various N (N=42, N=86, N=174). ©2020 IEEE.

August for New York homes), the temperature variation rate is 0.06 °C and 0.07 °C per 25 minutes

for Florida and New York homes respectively. The rate increases to approximately 0.1 °C per

25 minutes during the heating season for New York and Oregon/Washington homes. Therefore,

the proposed current reference can experience 0.1 °C temperature change for 25 minutes when

it is used for indoor low-power electronics such as smart thermostats. For low-power mobile

applications, the reference can be exposed to on average 0.1 °C temperature change for 5 minutes.

In the extreme cases mentioned before, the same temperature change can occur for 2.5 minutes.

Fig. 3.13 shows the measured dynamic accuracy of the current reference when there are tem-

perature variations at two extreme starting temperatures: -20 °C and 80 °C. The red arrows repre-

sent calibration noise around -20 °C, whereas the green arrows show maximum current deviations

caused by the temperature variations at -20 °C in the normal mode. The y-axis value of each data

point is defined by the difference between the current at each time point and the current at time

0. When the calibration cycle is 5 minutes to compensate 0.1 °C ambient temperature change

per 5 minutes for mobile applications, the average maximum current deviation is 0.5 % at -20 °C
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Figure 3.13: Accuracy of the current reference when there are ambient temperature variations.
A red arrow represents calibration noise at -20 °C, whereas a green arrow shows the maximum
current deviation in each normal mode at -20 °C. (a) 0.1 °C temperature change during 5 minutes
and 5-minute calibration cycle. (b) 0.1 °C temperature change during 25 minutes and 25-minute
calibration cycle. ©2020 IEEE.

as Fig. 3.13(a) represents. The deviation is equivalent to 50 ppm/°C accuracy degradation, if it

is assumed that the same deviation occurs from -20 °C to 80 °C although the actual deviation is

smaller than 0.5 % at higher temperatures (0.22 % at 80 °C). If the calibration cycle is reduced

to 2.5 minutes for extreme outdoor applications that have 0.1 °C ambient temperature change per

2.5 minutes, the maximum deviation is 0.36 % at -20 °C. As Fig. 3.13(b) shows, the maximum

deviation can increase up to 0.6 % at -20 °C when the calibration cycle is 25 minutes for indoor

electronics that are exposed to 0.1 °C ambient temperature change per 25 minutes.

Fig. 3.14 quantifies the effect of calibration noise on the dynamic accuracy of the current refer-

ence. The horizontal axis represents the deviations of the auto-calibrated reference currents from

an average current calculated at each temperature. The vertical axis shows the number of deviations

out of 101 calibration trials. The worst deviation is ±0.23 % at 80 °C considering ±3 standard

deviations obtained from the measured statistic in Fig. 3.14. Therefore, even if the worst deviation

occurs at all temperatures, the temperature coefficient of the generated current increases to only
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46 ppm/°C.

The other factor that contributes to temperature variations of the current reference is on-die

thermal conduction. To prove that the thermal conduction effect is not significant, the following

experiment is performed at two extreme temperatures: -20 °C and 80 °C. In the experiment, an

FPGA board generates on-die heat by maintaining the calibration mode of the current reference

continuously for 25 minutes instead of moving the reference to the normal mode periodically.

Since the building blocks of the reference, excluding IDAC, consume µW-range power in the cal-

ibration mode, the effect of µW-range thermal conduction can be observed if we compare the

current of IDAC recorded before the 25-minute calibration with the current obtained after the cal-

ibration by assigning the same input code for IDAC. There are approximately 0.3 pA and 0.1 pA

differences between the two currents at -20 °C and 80 °C respectively. Therefore, integrating the

proposed reference with other low-power systems such as [44] does not significantly degrade the

accuracy of the reference when the low-power systems consume nW power in their active modes.
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Table 3.3: Power Consumption of the Current Reference at Three Temperatures. ©2020 IEEE.

Temp. Power in Normal Mode Power in Calibration Mode
Total Average
Power (25-min

Cycle Calibration)

Total Average
Power (5-min

Cycle Calibration)

Total Average
Power (2.5-min

Cycle Calibration)

-20 °C 3.00 nW 5.04 µW

4.3 nW (reference:
4.01 nW, wake-up
timer: 0.25 nW*,
counter & logics:

0.02 nW**)

8.3 nW (reference:
8.04 nW, wake-up
timer: 0.25 nW*,
counter & logics:

0.02 nW**)

13.4 nW
(reference:

13.08 nW, wake-up
timer: 0.25 nW*,
counter & logics:

0.02 nW**)

23 °C 3.09 nW 5.30 µW

4.5 nW
(reference:

4.15 nW, wake-up
timer: 0.28 nW*,
counter & logics:

0.03 nW**)

8.7 nW
(reference:

8.38 nW, wake-up
timer: 0.28 nW*,
counter & logics:

0.03 nW**)

14.0 nW
(reference:

13.7 nW, wake-up
timer: 0.28 nW*,
counter & logics:

0.03 nW**)

80 °C 6.20 nW 6.50 µW

8.5 nW (reference:
7.50 nW, wake-up
timer: 0.63 nW*,
counter & logics:

0.34 nW**)

13.7 nW
(reference:

12.7 nW, wake-up
timer: 0.63 nW*,
counter & logics:

0.34 nW**)

20.2 nW
(reference:

19.2 nW, wake-up
timer: 0.63 nW*,
counter & logics:

0.34 nW**)
* Estimated from [46] ** Simulation

The effect of supply voltage variations on the accuracy of the current reference in the normal

mode is not remarkable thanks to the large output impedance of each leakage source in Fig. 3.3.

Measurement results show that there are 0.32 % and 0.37 % reference current variations in the

normal mode at -20 °C and 80 °C respectively when the supply voltage changes from 1.85 V to

1.75 V. If a 1-cm2 full-cell 8-layer Li-Ion microbattery proposed in [45] provides the 1.8 V supply

voltage for the proposed current reference, the battery can maintain the supply voltage accurately

at least up to 1 mAh/cm2 as Fig. 3(e) in [45] shows. Therefore, in this scenario, the supply voltage

variation effect is negligible because the supply voltage drop is much smaller than 100 mV for

more than 19 years considering that the reference and its wake-up timing circuits consume 5.8 nA

when the calibration mode is activated every 5 minutes.

3.7.3 Power Consumption

Since this work does not integrate circuits that control the timing of the calibration and is

tested with an FPGA board, the total power consumption of the whole system is estimated based

on a wake-up timer proposed in [46]. When the calibration mode is activated every 25 minutes
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or shorter, the timing of each mode can be controlled by the wake-up timer, an 18-bit ripple

counter, 30 logic gates, and two flip flops. The following elaborates the operation of the timing

circuits. Since the timer generates a 90-Hz clock, the value of the counter reaches 18’h20F58

from 18’h00000 after 25 minutes. At the moment, logic gates and a flip flop assign 1’b1 to

PEN_I2T_HP, PEN_I2T_LP, and PEN_ENGINE in Fig. 3.2(a). Logic gates and another flip flop

give a calibration start signal to the current reference by disabling RST_I2T_HP and by toggling

RST_N_DIGENGINE from 1’b1 after 200 ms (18 clock cycles). The flip flops maintain their val-

ues until the calibration engine in Fig. 3.2(a) assigns 1’b1 to FINISH. Since the FINISH signal

resets the 18-bit counter as well, the current reference moves back to the normal mode and stays

in the mode for 25 minutes again. When the supply voltage is 1.5 V, the timer consumes approxi-

mately 280 pW at room temperature according to [46]. Simulation results show that other logics,

including the counter and the flip flops, consume 27.2 pW in the nominal corner case (TT). There-

fore, the total power consumption overhead needed for the timing control is 307.2 pW at room

temperature. The estimate of the area overhead is 0.063 mm2 (0.057 mm2 for the wake-up timer

and 0.006 mm2 for other logics).

Table 3.3 summarizes the measured power consumption of the proposed current reference in

two modes at three temperatures when the supply voltage is 1.5 V. The total average power con-

sumption at each temperature is estimated based on three scenarios, where the calibration mode is

activated every 25 minutes, 5 minutes, or 2.5 minutes. In the normal mode, IREF2 in Fig. 3.2(a) is

close to 1 nA. Accordingly, the power consumption of the circuit in the normal mode is larger than

3 nW. Although the proposed circuit consumes 5.30 µW in the calibration mode at 23 °C, the total

estimated average power consumption is 4.5 nW when the automatic calibration is initiated every

25 minutes for indoor low-power applications. The average power consumption is drastically re-

duced from the power consumption in the calibration mode because the proposed circuit stays in

the normal mode most of the time as discussed in Section 3.5.
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3.7.4 Die Photograph and Comparison Chart

Fig. 3.15 shows a die photograph of the proposed current reference. The area of the circuit is

0.269 mm2, including the area of the MIM capacitors. Table 3.4 compares the proposed current

reference with other low-power current references that generate currents smaller than 1 µA. For a

fair comparison, power consumption figures reported in [25, 30, 32] are recalculated. Compared

to the current references in [22, 25, 30], which have proven measured results with no multiple-

temperature trimming requirement, the proposed circuit consumes at least 74 % less power, while

maintaining competitive high accuracy, with the calibration mode activated every 25 minutes to

compensate a reference current variation caused by a 0.1 °C ambient temperature change. The cur-

rent references in [31] and [33] are not directly comparable to the proposed circuit, because [31]

and [33] only have simulation results, although they do not need multiple-temperature trimmings.

The current reference in [32] is also hard to compare, since it utilizes a two-temperature trimming,

although it achieves 1000 times smaller power consumption than this work, with comparable ac-

curacy. All things considered, this work proves that the calibration scheme is an effective way to
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Table 3.4: Comparision Chart. ©2020 IEEE.

Publication
Title This Work

SSCL
[32]

ISCAS
[31]*

ISCAS
[33]*

ISSCC
[30]

ESSCIRC
[20]

ESSCIRC
[25]

TCAS2
[22]

Year 2018 2016 2019 2017 2010 2017 2010
Technology 180 nm 65 nm 65 nm 180 nm 180 nm 350 nm 180 nm 350 nm
Reference
Current
(IREF)

1 nA 1.2 pA 5.0 pA 2.7 nA 6.6 nA 10.0 nA 35.0 nA 96.0 nA

Sleep Mode
Support

Yes No No No No No No No

Average
Power

Consumption
@ Room

Temperature

4.5 nW (25-min
cycle auto cal.),
8.7 nW (5-min
cycle auto cal.),

14.0 nW
(2.5-min cycle

auto cal.)

3.9 pW
(includes
an addi-
tional

mirror-
ing)

14.5 pW 26.0 nW

17.9 nW
(includes
an addi-
tional

mirror-
ing)

88.5 nW
53.5 nW
(includes

IREF)
1.0 µW

Temperature
Range (°C)

-20~80 -20~60 0~100 -40~125 0~100 -20~80 -40~120 0~80

Multiple
Temperature

Trimming
No Yes Yes No Yes Yes No No

TC Without
Multiple
Temp.

Trimming
(Static +
Dynamic,
ppm/°C)

289 (183+106,
25-min cycle

auto cal.), 279
(183+96, 5-min
cycle auto cal.),

265 (183+82,
2.5-min cycle

auto cal.)

N/A 128 309 680 N/A 282 600

TC After
Multiple
Temp.

Trimming
(ppm/°C)

N/A 469 31 N/A 283 1190 N/A N/A

Supply
Voltage
Range

1.5 V ~ 2.0 V
0.4 V ~
1.5 V

0.5 V ~
1.8 V

2.0 V ~
3.6 V

1.3 V ~
1.8 V

1.3 V ~
3.0 V

1.5 V ~
2.5 V

1.8 V ~
3.0 V

Line
Sensitivity

1.40 %/V 2.5 %/V 0.95 %/V 9.4 %/V 1.16 %/V 3.00 %/V 0.13 %/V 0.20 %/V

Area (mm2)

0.332 (reference:
0.269, timer &
counter logics:

0.063)

0.008 0.0002 0.009 0.055 0.120 0.017 0.015

Number of
Samples

10 13 N/A N/A 10 15 32 4

* Simulation

relax the trade-off between the power consumption and the accuracy of a current reference, while

investing on a large area, compared to other references. In addition, the proposed circuit needs

a slow ambient temperature change lower than 0.1 °C for 2.5 minutes, which is valid for many

applications as discussed in Section 3.7.2.
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3.7.5 Range and One-Step Current Accuracy of IDAC

As discussed in Section 3.3.1, the range of IDAC should include a target current (1 nA) from

-20 °C to 80 °C. Measurement results show that the IDAC generates 4.08 nA and 38.06 nA

at -20 °C and 80 °C respectively when the input of the IDAC has the maximum code value

(27’h7FF_FFFF). Furthermore, the IDAC outputs a current smaller than 100 fA and 60 pA at

-20 °C and 80 °C respectively when the input code is the minimum (27’h000_0000). Therefore,

the IDAC has enough margin in its output current range. Additionally, the IDAC should have small

one-step currents (DNLs) when it generates a current close to the target current (1 nA). Since there

are total 227 possible input combinations, all input combinations cannot be tested in a reasonable

time. Instead, we pick an input base code value that generates a current around 900 pA and check

one-step currents by increasing the input code value across the boundaries between two adjacent

binary-weighted leakage sources in Fig. 3.3. For example, at 80 °C, we select 27’h030_0000

as a base input code since it generates 898 pA. Afterwards, two output currents are compared

when the input code increases from 27’h0030_0001 to 27’h0030_0002, from 27’h0030_0003 to

27’h0030_0004, from 27’h0030_0007 to 27’h0030_0008, and so on until the input code generates

a current larger than 1 nA. In this experiment, the largest one-step currents are 2.2 pA and 1.1 pA

at -20 °C and 80 °C respectively. Therefore, the quantization error of IDAC is smaller than 0.22 %.

3.8 Conclusion

This chapter shows a current reference that can generate 1 nA with high accuracy (289 ppm/°C,

1.4 %/V) and small power consumption (4.5 nW) when the calibration mode is enabled every

25 minutes to compensate a reference current variation caused by a 0.1 °C ambient temperature

change in indoor low-power applications. By using the automatic calibration, the proposed circuit

can relax the trade-off between the power consumption and the accuracy of a current reference with

no help from a multiple-temperature trimming. On the other hand, the proposed circuit requires a

large area and a slow ambient temperature change lower than 0.1 °C for 2.5 minutes.
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4. A SURVEY ON IN SITU ANALOG CIRCUIT OPTIMIZATION*

4.1 Design Centering

Process-Voltage-Temperature (PVT) variation and device aging have been one of the critical

issues of analog circuits especially in modern technologies. To meet all specifications even in

the worst-case scenario, the design centering technique has been utilized [47, 48]. When a cus-

tomer explicitly gives specifications for circuit characteristics z1 and z2, we can draw the region

of acceptable performance specifications (gray area) on a 2-dimensional performance space [48]

as Fig. 4.1 shows. In Fig. 4.1, x-axis and y-axis represent metrics of z1 and z2, respectively, and

larger z1 and z2 the better performance. After mapping the region of acceptable performance to

a design parameter space, we can accomplish the design centering by finding a design point that

maximizes the yield in the parameter space. Fig. 4.1 includes the design point obtained from the

design centering. The z1 and z2 characteristics of a design placed at the design center can stay in

the acceptable performance region even when severe PVT variations and device aging affect the

design after chip fabrication. However, the design centering requires large margins. For example,

in Fig. 4.1, z1 and z2 are higher than their minimum requirements at the design center, resulting

in sacrificing other circuit characteristics such as power or area consumption. In some cases, the

sacrifice can be prohibitively expensive.

4.2 Tuning/Calibration Methodologies and Their Limitations

To overcome the limitation of the design centering, one possible alternative is placing a design

point close to an edge of an acceptable performance specification region such as design point A

in Fig. 4.1. Since the design at A does not have an excessive margin for z1 anymore, the design

does not need to sacrifice other circuit characteristics such as power or area. However, severe PVT

variations and device aging can move the actual operating point of the design to the outside of an

*©2018 IEEE. Parts of this chapter are reprinted, with permission, from "A Built-In Self-Test and In Situ Analog
Circuit Optimization Platform", by Sanghoon Lee, Congyin Shi, Jiafan Wang, Adriana Sanabria, Hatem Osman, Jiang
Hu, and Edgar Sánchez-Sinencio, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp.
3445-3458, Oct. 2018.
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Figure 4.1: Comparison between a conventional 1-dimensional tuning/calibration and an N-
dimensional optimization. ©2018 IEEE.

acceptable performance region like A′. A conventional approach to solve this issue is utilizing a

tuning/calibration that relocates A′ to the inside of the acceptable performance region.

One common tuning/calibration methodology is designing analog circuits with digitally con-

trolled tuning knobs and using automatic test equipment (ATE) [49]. After chip fabrication, ATE

can automatically check the validity of the analog circuits chip by chip and find an optimal control

code for each chip. This code can be written in a ROM or eFUSEs and be retrieved when the

chip is powered on. Unfortunately, ATE usually requires high setup cost and does not support

complex/high-accuracy measurements for analog circuits.

In this context, many on-chip methodologies, including built-in self-tests (BISTs) and on-chip

tuning/calibration, have been researched for various analog circuits [50]. We can categorize the

methodologies into two groups depending on how to verify their target characteristics. The first

category uses indirect measurements based on statistics [51–53]. Since the characteristics of an

analog circuit are correlated with each other, a statistical model can predict target characteristics

from other characteristics we can measure easily with a low cost. For example, [51] predicts

the target characteristics of an RF power amplifier, such as gain, linearity, power consumption,
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and power efficiency, from the DC bias current of the amplifier and the R/C values of its passive

components. Even though this method can test and calibrate multiple analog circuit characteristics

simultaneously from the minimal set of relatively simple measurements, it has several drawbacks.

First, it has limited accuracy. Because of the statistical nature of this approach, there are deviations

between predicted and actual characteristics. Due to these deviations, the calibrated circuit might

not be in an optimal setting. Second, it is hard to fully integrate the statistical model on a chip

because of the high complexity of the model. Therefore, an external computer is still needed,

which makes an in-situ calibration impossible.

The other category utilizes on-chip direct measurements to evaluate target characteristics [54–

60]. For example, [54] and [55] calibrate a matching network and the gain of a low-noise ampli-

fier, respectively, by measuring signal power or amplitudes at various nodes. Each circuit proposed

in [56–58] tunes Q or ωO of an analog baseband filter by evaluating the amplitude/phase response

of a replica (master) circuit or by measuring the RC time constant of a capacitor array. Although

methods in this category can provide relatively accurate calibration results and in situ corrections,

there are two major drawbacks. First, these methods can handle a very limited number of speci-

fications and cannot make a balance between one and another. For example, although the circuits

proposed in [56, 58] can tune Q and/or ωO, the circuits cannot validate other circuit characteris-

tics such as stability, power consumption, and settling time. Even if we can use dedicated tuning

circuits for the characteristics, there is no systematic way to make a “balance” among multiple

circuit characteristics that are in a trade-off relationship and to find the “optimal” control code for

a circuit under test (CUT). This issue will be more evident when the CUT has a large programma-

bility to support many standards and scenarios because the total number of possible combinations

of control codes increases exponentially with the number of control bits. Second, some methods

in this category require a replica circuit that is tuned instead of a main circuit. These methods can

be problematic because recent technologies cannot guarantee a good matching between the two

circuits anymore.
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4.3 Motivation for In Situ Analog Circuit Optimization

In situ analog circuit optimization techniques can overcome the aforementioned limitations

of the on-chip tuning/calibration methodologies. The optimization techniques evaluate multiple

circuit characteristics by stimulating a circuit under optimization (CUO) and by monitoring the re-

sponses of the CUO. Afterwards, the techniques calculate the cost of a tuning knob setting applied

to the CUO. After trying multiple tuning knob settings and evaluating their costs, the optimization

techniques find the best tuning knob setting that minimizes the cost based on an algorithm each

technique utilizes. Since the cost is a function of measured circuit characteristics, the optimization

techniques can achieve a good balance among competing circuit characteristic goals depending on

the definition of a cost function, resulting in a better trade-off among the circuit characteristics.

Fig. 4.1 clearly shows the strength of analog circuit optimization techniques. If we employ one of

analog circuit optimization techniques, we can place our design point near the bottom-left corner

of the acceptable performance specification region in Fig. 4.1 like B. Since the design point does

not have margins for z1 and z2 unlike A and the design center, we do not need to sacrifice other cir-

cuit characteristics, such as area and power consumption. When PVT variations and device aging

move the actual operating point of the design to B′, the N-dimensional optimization can relocate

B′ to the optimal operating point B, whereas the 1-dimensional tuning/calibration cannot move

B′ to B. Therefore, in situ analog circuit optimization techniques allow designers to position their

design at B since the effects of the variations can be well compensated. In addition, since the

techniques stimulate a CUO and capture the responses of the CUO directly, they normally do not

require replica circuits.

4.4 Previous Works on In Situ Analog Circuit Optimization

There are only a few previous works on in situ analog circuit optimization. [61] optimizes the

gain and the linearity of a power amplifier by analyzing the responses of the amplifier when a well-

tailored signature input stimulates the amplifier. Since measuring the linearity of a power amplifier

directly on a chip requires complex and high-performance circuits, utilizing a signature testing
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can be a good option to relax the hardware requirement if it can guarantee enough optimization

accuracy based on the correlation between the response of the amplifier in the signature testing

and the actual characteristics of the amplifier. Even though the optimization technique proposed

in [61] does not require complex circuits, [61] does not show a completely integrated prototype

chip and proves the validity of the technique by only using discrete components, measurement

equipment, and an external computer. [62] minimizes spurious tones of a phase-locked loop (PLL)

by optimizing a correction signal generator that compensates the control voltage fluctuation of a

voltage-controlled oscillator. Since the optimization technique proposed in [62] needs to measure

the control voltage fluctuation directly, a high-resolution high-speed analog-to-digital converter

(ADC) is required for the technique, leading to a large area overhead. [62] uses an external ADC

and a computer for the proposed optimization. [63] optimizes a phase rotator to minimize gain and

phase errors caused by the rotator. [63] uses a vector network analyzer and an external computer

to evaluate the errors and to operate an optimization algorithm. [64] proposes an optimization

technique for an 18th-order Gm-C filter. Even though [64] claims that the proposed technique can

minimize the gain and the group delay errors of the filter even when the filter consumes small area

and power, [64] does not discuss about a stimulation signal generation and a response capturing

mechanism. The prototype chip shown in [64] also does not include those two parts. In summary,

[61–64] do not show a completely-integrated in situ analog circuit optimization technique. In

addition, the articles do not discuss required accuracy for each building block of the proposed

techniques. To the best of the author’s knowledge, the only work that presents a fully-integrated

in situ analog circuit optimization system is [4]. We discuss about the platform proposed in [4] in

Chapter 5.
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5. A BUILT-IN SELF-TEST AND IN SITU ANALOG CIRCUIT OPTIMIZATION

PLATFORM*

5.1 Introduction

[4] proposes a built-in self-test and in situ analog circuit optimization platform. The plat-

form directly measures excitation and response signals for a circuit under optimization (CUO).

Based on the results of the measurements, a fully-digital optimization engine extended from [65]

automatically finds an optimal control code for the CUO to fulfill multiple arbitrary weighted char-

acteristic goals simultaneously. Therefore, the CUO can have and maintain well-balanced optimal

characteristics even in severe PVT variations and device aging.

Because most circuit blocks except the CUO will be powered-off after the optimization process

completes, the power consumption overhead is not a critical issue for this platform. Also, reusing

mixed-signal circuits and digital computation blocks in many system-on-chip products, such as a

frequency synthesizer, a low-speed analog-to-digital converter (ADC), and arithmetic logic units

(ALUs), can mitigate the area overhead of this platform. Even if those blocks are not available for

the overhead reduction, the platform can be justified by a higher yield and lower power optimal

characteristics of the CUO.

The rest of this chapter is organized as follows. In Section 5.2, the proposed platform architec-

ture is introduced. Section 5.3 describes the role and the structure of a cost function. The reason

why we need an optimization engine and the algorithm that supports it are discussed in Section 5.4.

In Section 5.5, the required accuracy of each building block in the platform is analyzed. Section 5.6

presents the Monte-Carlo simulation results of the platform and the measurement results of an in-

tegrated circuit (IC) prototype. Finally, conclusions are made in Section 5.7.

*©2018 IEEE. Parts of this chapter are reprinted, with permission, from "A Built-In Self-Test and In Situ Analog
Circuit Optimization Platform", by Sanghoon Lee, Congyin Shi, Jiafan Wang, Adriana Sanabria, Hatem Osman, Jiang
Hu, and Edgar Sánchez-Sinencio, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp.
3445-3458, Oct. 2018.
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Figure 5.1: Conceptual architecture of the proposed platform. ©2018 IEEE.

5.2 The Proposed Platform Architecture

5.2.1 Optimization With BIST

The full concept of the proposed platform is illustrated in Fig. 5.1. The complete platform

consists of an analog BIST part and a digital optimization part. Characteristics of the CUO in

the analog BIST part can be changed by the N -dimensional control vector
−→
V = [x′

1, x
′
2, · · · , x′

N ],

which is a collection of tuning variables (knobs), such as widths of transistors, resistances, ca-

pacitances, and bias currents. These variables are modified by implementing arrays of transistors,

resistors, and capacitors with digitally-controlled switches [65]. Once the vector is given as a digi-

tal code, characteristics of the CUO can be evaluated by stimulating it and analyzing its responses.

In this platform, two types of responses can be measured and analyzed. One is a frequency-domain

response and the other is a time-domain response. These two responses will be discussed in detail

in Section 5.2.2 and 5.2.3. During the evaluation of i-th response, zmeas,i is calculated. After all

evaluations are complete, the overall performance of the CUO is quantified by computing a cost
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function value of the control vector
−→
V . The cost function is defined as a summation of differences

between the extracted characteristic zmeas,i and the target characteristic ztar,i for all i. Before the

optimization, the cost function value can be high due to severe PVT variations and device aging.

The optimization engine finds the optimal control vector
−−→
Vopt, which makes the cost function a

minimum, by changing
−→
V via an optimization algorithm.

5.2.2 Frequency-Domain Characterization of a CUO

To characterize a CUO in the frequency domain, the excitation signal generator (ESG) in

Fig. 5.1 utilizes a square wave and generates a sinusoidal signal VESG by suppressing harmonic

components of the square wave [66]. The CUO is stimulated by the sinusoidal signal and gener-

ates a sinusoidal response VRES . The ORA samples the input and the output signals of the CUO

(VESG, VRES) with the same frequency ω1. Since the frequency of the sampled signals are identi-

cal to that of the sampling clock, the input of ORA is down-converted to DC, and the DC output

is digitized using a low-speed ADC. By changing the phase of the sampling clock, the two-step

in-phase and quadrature (I/Q) sampling [67] can be accomplished without an additional sampler

as depicted in Fig. 5.2(a). If the input of ORA can be expressed as a sinusoidal signal,

y(t) = A cos (ω1t− θ) . (5.1)

The sampled I/Q values can be represented as

yI [m] = y(t) · δ(t−mT ) = A cos (θ) ,

yQ[m+ 1] = y(t) · δ(t− (m+ 1)T − T/4) = A sin (θ) . (5.2)

Here, T = 2π/ω1, and δ(t) indicates a Dirac delta function. The magnitude and the phase re-

sponses of the CUO can be extracted by comparing the magnitudes and the phases of VESG and

VRES , which are calculated from the sampled values.

After the evaluation of the magnitude and the phase responses of the CUO at ω1, a new si-
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(a) (b)

Figure 5.2: Frequency- and time-domain characterizations. (a) I/Q sampling for the frequency-
domain characterization. (b) Multi-phase sub-sampling for the time-domain characterization.
©2018 IEEE.

nusoidal signal at frequency ω2 is generated, and the entire calculation process is repeated. By

iterating this procedure multiple times, the transfer function of the CUO can be estimated. A cost

function quantifies the difference between the estimated transfer function and the target transfer

function as a metric that can be utilized for CUO optimization.

5.2.3 Time-Domain Characterization of a CUO

For a highly optimized CUO, direct measurements of time-domain characteristics are manda-

tory because indirect prediction of the characteristics from the frequency-domain measurements is

not accurate. It is true that time-domain characteristics can be derived from the estimated transfer

function when a CUO is an ideal 1st- or 2nd-order system [68]. However, many practical circuit

systems have higher orders than second order since many non-ideal factors, such as parasitic com-

ponents and finite GBW of op-amps, can be prominent in a real system. Therefore, time-domain

characteristics of a CUO cannot simply be deduced from its frequency characteristics; they should

be optimized together with other circuit characteristics.

To evaluate time-domain characteristics of a CUO, a step input signal is applied to the CUO.
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(a) (b)

Figure 5.3: Stability test. (a) Stable case. (b) Unstable or marginally stable case. ©2018 IEEE.

The step input can be emulated by utilizing a square wave in the ESG. Because many circuit

systems have complex poles, the CUO might show an under-damped response that has a frequency

close to ωO as depicted in Fig. 5.2(b). The most straightforward way to extract the peak value and

the settling time of the response is sampling the response with a frequency much higher than ωO.

However, it requires a fast sampler, and that can be a burden for the entire platform. To mitigate

this issue, a multi-phase sub-sampling can be deployed [59]. Instead of sampling multiple times

within a single-clock cycle, an integer number of clock-cycle delays can be introduced between

two consecutive sampling actions. For convenience, sub-sampled data are displayed in a single-

clock cycle in Fig. 5.2(b). This sub-sampling can be effective only when the input and the output

of the CUO are periodic signals. Even though the effective operating speed of the sampler can be

relaxed by utilizing this technique, the fine timing resolution (∆t) is still required. Adequate values

for ∆t will be explored in Section 5.5.

In addition, the time-domain characterization is also useful for the stability test of a CUO.

As shown in Fig. 5.3, the step response of a CUO will diminish in time if the CUO is stable.

However, the response will keep growing or maintain an oscillation if it is unstable or marginally

stable. Therefore, the oscillation can be detected by sampling the step response during multiple-
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clock cycles. If the sampled values converge to a DC voltage, the CUO can be considered a stable

system. Otherwise, the CUO is in an unstable state or a marginally-stable state. This test result can

be incorporated in a cost function as a penalty term.

5.3 Cost Function

Before the optimization engine finds an optimal control vector
−−→
Vopt, on-chip quantitative eval-

uation of each control vector
−→
V is required. For that purpose, a cost (or error) function should be

defined. It measures the difference between the target and the measured characteristics of a CUO

when the control vector
−→
V is assigned to the CUO as below.

C(
−→
V ) =

M∑
i=1

αi

∣∣∣zmeas,i(
−→
V )− ztar,i

∣∣∣+ PE(
−→
V ). (5.3)

αi is a constant for each i, PE is a penalty function, and M is the total number of measured

characteristics of a CUO. When the measured characteristics of a CUO at
−→
V are far from the

target, the cost function value C(
−→
V ) is high, and the optimization engine will try a different

−→
V

to minimize C(
−→
V ). On the other hands, when C(

−→
V ) is smaller than a certain cost criterion, or

when the maximum number of algorithmic iteration has been reached, the optimization engine

stop finding a better
−→
V , and

−→
V will be fixed.

Ideally, the target design point should be located at the edge of the acceptable performance

region to minimize power and area consumption while satisfying all specifications. However, in

this case, the actual operating point of a CUO after optimization can be outside the acceptable

performance region, since there is a possibility that the optimization engine fails to find the design

point that has exact zero cost due to the limited number of iterations. Therefore, by assigning a

small margin (θ1) to the target design point (B) as shown in Fig. 5.4, we can achieve a good balance

between the optimization quality and the probability of finding an actual operating point inside the

acceptable performance region after optimization (reliability). The quantitative relations between

the probability, the margins, and the algorithm stopping criteria will be presented in Section 5.4.

In (5.3), zmeas,i(
−→
V ) can represent various values. In the frequency-domain characterization,
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Figure 5.4: Magnified view around the design point B in Fig. 4.1, and equi-cost lines when M = 2,
α1 = α2 = 1, and PE = 0 in (5.3). ©2018 IEEE.

zmeas,i(
−→
V ) can be a magnitude or a phase response of a CUO at a certain frequency ω. In the time-

domain characterization, zmeas,i(
−→
V ) can be a time-domain characteristic such as a peak value or a

settling time of a CUO. By varying αi, each term of the cost function can have a different weight.

For instance, if α1 = 1 and αi = 0 ∀i ̸= 1, then the cost function only evaluates zmeas,1(
−→
V ) and

ignores all the other zmeas,i(
−→
V ). In this specific case, the optimization engine will find the

−→
V that

makes
∣∣∣zmeas,1(

−→
V )− ztar,1

∣∣∣ a minimum. In this way, relative importance of each specification can

be given by the user of this platform, and a right “balance” among various circuit characteristics

can be achieved.

Another term PE(
−→
V ) represents a penalty function. In a constrained optimization problem,

its constraint can be added to the cost function as a penalty term. Then, this transformed prob-

lem can be solved in the same way as an unconstrained optimization [69]. Through design-time

simulations, we can carefully choose the weighting factor for the penalty term to satisfy the cor-

responding constraint while the original objective is not significantly sacrificed. For example, in

Fig. 5.4, z1 and z2 characteristics of a CUO can be optimized only when the CUO is stable. There-

fore, the characteristics should be constrained within the region, where the stable operation of the
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CUO is guaranteed. The confinement can be achieved by inserting the following penalty to the

cost function.

PEstb(
−→
V ) =


∞ if unstable or marginally stable,

0 otherwise.
(5.4)

The optimization engine automatically rules out the control vector
−→
V that makes the CUO unstable

or marginally stable because the cost is too high in that case.

In addition, the power consumption of a CUO can also be included in a cost function as a

penalty. Because the minimum power consumption is always a desired characteristic, it does not

need to be measured when bias currents can be controlled monotonically even in PVT variations

and device aging. This monotonicity can be easily obtained by utilizing thermometer codes for the

control of resistors. The penalty function for minimum bias current can be represented as

PEpwr(
−→
V ) = x′

bias. (5.5)

Here, x′
bias is an element of

−→
V . When the actual bias current of a CUO is proportional to the control

code value x′
bias, the optimization engine will try to minimize the control code x′

bias itself, and the

bias current will be the smallest value while satisfying all the other constraints and requirements.

Overall, the entire penalty term can be expressed as a function of stability and power consump-

tion.

PE(
−→
V ) = PEstb(

−→
V ) + β · PEpwr(

−→
V ). (5.6)

In (5.3) and (5.6), appropriate weight (αi, β) should be chosen because each term can have a differ-

ent unit and emphasis according to CUO specifications. This can be done by checking optimization

results in simulations and adjusting the weight.

5.4 Optimization Engine

Based on the costs of various control vectors, the optimization engine tries to find the optimal

control vector
−−→
Vopt, which makes Copt(= C(

−−→
Vopt)) a minimum. The most intuitive algorithm to find
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(a)

(b)

Figure 5.5: Tow-Thomas biquad. (a) Schematic. (b) ωO & Q characteristics. ©2018 IEEE.

−−→
Vopt is enumerating all possible combinations of the control knob settings. However, this approach

is not realistic in that the size of the space of
−→
V increases exponentially as the number of bits of

the control knobs increases.

To overcome this issue, one common approach is utilizing an orthogonal tuning/calibration

[70]. In the orthogonal tuning, each circuit characteristic can be tuned one by one, and each tuning

action does not affect other circuit characteristics. Since each characteristic is tuned independently,

a set of specifications can be divided and conquered separately. Thus, this approach can find
−−→
Vopt
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much faster because the size of the total search space increases linearly with the number of control

knobs.

Unfortunately, orthogonal tuning is not a possible option when many specifications should be

dealt simultaneously because circuit characteristics have trade-off relationships with each other by

nature. This can be well illustrated by the following example. In Fig. 5.5(a), if each op-amp is

modeled as a two-pole system, the relation between Qactual, ωO,actual, and GBW can be shown

as in Fig. 5.5(b). In this figure, Qideal and ωO,ideal mean Q and ωO of the filter when the GBW

is infinite, whereas Qactual and ωO,actual are Q and ωO when the GBW is a given value. As we

can see, Qactual and ωO,actual are not orthogonal to the GBW . When the GBW is too small,

β · PEpwr(
−→
V ) in (5.6) are negligible because the GBW is proportional to the power consumption

of the op-amps, whereas αi

∣∣∣zmeas,i(
−→
V )− ztar,i

∣∣∣ in (5.3) is large due to the limited tuning ranges.

On the contrary, when the GBW is larger than needed, β · PEpwr(
−→
V ) is too high. After all,

−−→
Vopt

is located between those two extreme cases. Thus, all settings for the GBW should be checked

to find
−−→
Vopt. When the orthogonal tunings are applied to the CUO at each GBW setting, the size

of the total search space will be 3 × 210, provided that the control knobs for Qactual, ωO,actual,

and gain at ωO,actual are orthogonal to each other, and all control knobs have 5 bits per each knob,

including the knob for the GBW . If the GBW of two op-amps are tuned separately, the size will

be 3 × 215. The important point here is that the size of the search space increases exponentially

when more non-orthogonal circuit characteristics should be tuned together. Consequently, the

orthogonal tuning scheme cannot be a universal solution due to its limitation.

Instead of trying to reduce the size of search space, another approach to discover
−−→
Vopt efficiently

is utilizing well-established optimization algorithms. Regardless of dependencies among control

knobs, the methodologies previously introduced are based on enumeration, which are close to

brute-force methods. Optimization algorithms can be a powerful tool as they reduce the required

time for searching when the size of search space is given.

In general, analog circuit optimization is a non-convex problem if there are no special approx-

imations [71]. Even though a complete theory discovering an “exact" global minimum within a
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reasonable time has not been found yet for non-convex optimization, there are many meta-heuristic

algorithms that can converge to a sub-optimal point [72]. Since those algorithms are on the ba-

sis of heuristics, discovering
−−→
Vopt cannot be guaranteed. However, if the algorithms are designed

properly, the final results of the algorithms can be very close to the optimal one. There are two

types of meta-heuristic algorithms. The first type is a single-solution approach, which stores only

one previous candidate and modifies it to get a new candidate. Pattern search (PS), sensitivity

search (SS), and simulated annealing (SA) can be included in this category. The second type is

a population-based approach. Algorithms in this category maintain a number of previous candi-

dates and exploit previous search experience to guide the search process for a new candidate better.

Genetic algorithm (GA) and Nelder-Mead method (NM) are examples of this type.

The SA-SS hybrid algorithm is utilized in this paper even though any kind of meta-heuristic

algorithm can be used for the platform proposed in this paper. First, because population-based

algorithms require larger memory than single-solution algorithms, they are ruled out to reduce

hardware complexity and area overhead. Second, among single-solution algorithms, SA is good

at exploring search space and approaching to the points close to a global optimum, but poor at

converging to the optimum. On the other hand, SS searches well around an initial starting point, but

can be trapped in a local minimum. Therefore, by merging the two algorithms, a global optimum

can be found quickly, with local minima avoided [65].

A pseudo code for the hybrid algorithm is shown in Algorithm 1. It consists of two parts. The

first part is an SA phase, which is described in Steps 3-15. The second part is an SS phase, which

is shown in Steps 17-24. In the SA phase, a random control vector
−−→
Vnew is newly generated at each

iteration (Step 4). If the cost of the new control vector is smaller than the previous optimal cost,

the previous vector and the cost of it are updated to the new one (Steps 5-8). Even if the new cost

is larger than the previous cost, the update is executed if the condition shown in Step 10 is true

(Steps 10-12). In Step 10, T is virtual temperature that is utilized for the algorithmic annealing

process. C∆ is the difference between the new cost and the previous optimal cost. random(0, 1)

is a randomly selected number between 0 and 1 at each iteration. When T is very large, e−C∆/T
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Input : Initial virtual temperature Tmax, cooling rate k, maximum number of SA iterations
MAXSA, maximum number of SS iterations MAXSS , and cost function threshold θ

Output: The optimal solution
−−→
Vopt and the corresponding cost function value Copt

1 Initialize T ← Tmax; Copt ←∞;
−−→
Vopt ← INIT ;

2 Set global counter i← 0;
3 while i < MAXSA & Copt > θ do
4

−−→
Vnew ← RANDOM ;

5 Cnew ← C(
−−→
Vnew);

6 C∆ ← Cnew − Copt;
7 if C∆ < 0 then
8 (

−−→
Vopt, Copt)← (

−−→
Vnew, C(

−−→
Vnew));

9 else
10 if exp(−C∆/T ) > random(0, 1) then
11 (

−−→
Vopt, Copt)← (

−−→
Vnew, C(

−−→
Vnew));

12 end
13 end
14 T ← kT ; i++;
15 end
16 Ctmp ←∞;
17 for i = 0; i < MAXSS & Copt < Ctmp; i++ do
18 Ctmp = Copt;
19 for each neighbor

−→
Vj of

−−→
Vopt do

20 if C(
−→
Vj) < Copt then

21 (
−−→
Vopt, Copt)← (

−→
Vj , C(

−→
Vj));

22 end
23 end
24 end
25 return (

−−→
Vopt, Copt);

Algorithm 1: SA-SS hybrid algorithm. ©2018 IEEE.

will be close to 1, and a majority of new control vectors are going to replace previous vectors even

if the replacement can increase the cost temporarily. By repeating this process, “hill climbing”

can occur, and local minima can be avoided. However, the hill-climbing activity becomes unusual

as T decreases (0 < k < 1). Therefore, the final solution can converge to a global minimum.

After MAXSA iterations, or after the point that has a cost smaller than θ is found, the SA phase

is closed, and the optimization engine starts the SS algorithm (Step 16). By adding/subtracting 1-

LSB to each control knob, all neighbors (
−→
Vj ) of the current optimal vector can be evaluated (Steps
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(a) (b)

Figure 5.6: Relation between the number of SA/SS iterations, the normalized cost criterion, and the
probability of having a cost smaller than the criterion after the number of iterations. (a) MAXSS =
0. (b) MAXSS = 3. ©2018 IEEE.

19-20). The engine will take the
−→
Vj that generates the lowest cost (Step 21). This process will be

repeated until there is no room for improvement, or until the maximum iteration limit (MAXSS)

has been reached.

To make the SA-SS algorithm more reliable and effective, the stopping criteria and the param-

eter k should be chosen and verified by testing sample chips or by running repetitive simulations.

Fig. 5.6 shows the results of such simulations. It reveals the relation between the number of SA/SS

iterations and the probability of having a cost smaller than a certain criterion after the number of

iterations. In the simulations, all costs (Cnorm) and cost criteria (θnorm) are normalized by the cost

of a fixed starting point. As the figure indicates, if we have large θnorm, a relatively small number

of SA/SS iterations are required to obtain Cnorm(
−−→
Vopt) smaller than θnorm with high probability

(0.8~0.9). However, large θnorm means huge back-off (margin) from the edge of an acceptable

performance region as shown in Fig. 5.4. Therefore, the criteria (MAXSA,MAXSS, θ) should be
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chosen according to the user’s need; if the user wants high-quality optimization, θ should be small

but MAXSA and MAXSS will be large.

One possible concern regarding this platform is that the optimization algorithm can converge to

a bad solution that is far from an acceptable performance region because of the heuristic nature of

the algorithm. Even though it is true that we can lower the probability of having the bad solution by

allowing enough iterations, we cannot avoid the situation 100% especially when the CUO should

be optimized periodically to track PVT variations and device aging.

A feasible solution is supporting multiple modes of operation. For example, a CUO can support

a dual-mode operation: a conservative mode and an optimization mode. The dual modes have two

different design points. For example, the design center in Fig. 4.1 for the conservative mode and

B for the optimization mode. When the CUO is powered on, it starts from the conservative mode;

thus, the operating point of it is still inside an acceptable performance region even if there are

large PVT variations and device aging. In some applications, the CUO does not need to be always

on [73]. When the CUO is in an idle state, the mode can be changed to the optimization mode. If the

optimization process successfully finds a good operating point inside an acceptable performance

region before the end of the idle state, the CUO will have the updated operating point. Otherwise,

the CUO will maintain the previous conservative operating point and wait until the next idle state

comes. If the CUO should always be in an on state for other applications, we can exploit two same

CUOs: one is in the optimization mode while the other is in use. By following this approach, we

can guarantee that the actual operating point of a CUO is always inside an acceptable performance

region after the optimization process is complete.
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5.5 Analysis of Required Accuracies for Platform Building Blocks

5.5.1 Definitions

5.5.1.1 Control vector

A control vector can be defined as a collection of tuning variables (knobs).

−→
V = [x′

1, x
′
2, · · · , x′

N ] , x
′
k = (xk − xk,min)/xk,LSB. (5.7)

x′
k is a normalized non-negative integer value.

5.5.1.2 Euclidean distance

A Euclidean distance between two control vectors,
−→
V and

−−→
Vcen, can be defined as below.

d(
−→
V ,
−−→
Vcen) =

√√√√ N∑
i=1

(
x′
i − x′

cen,i

)2
. (5.8)

N indicates the total number of tuning variables.

5.5.1.3 Percent root-mean-square error (%RMSE)

In order to quantify how close the actual characteristics of a CUO are to the specifications given

by the user of this platform, a %RMSE can be defined as

%RMSE(
−→
V ) = 100×

√√√√ 1

L

L∑
i=1

(
zact,i(

−→
V )− ztar,i
ztar,i

)2

. (5.9)

zact,i means i-th actual characteristic of a CUO at
−→
V , and ztar,i indicates i-th target characteristic

of a CUO set by the user. It should be mentioned here that zact,i is different from zmeas,i in (5.3).

Due to the non-idealities of an ESG, an ORA, and digital computation blocks, the measured char-

acteristics of a CUO on a chip will have some errors compared to the actual characteristics of the

CUO. If we consider that all circuits except the CUO will be powered-off after the optimization

process is completed, the measured characteristics themselves are not important in the perspective
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of the user. Instead, the important thing is whether the actual characteristics of the CUO at
−→
V are

close enough to specifications or not. This can be revealed by the %RMSE, and it can be utilized

as an indicator of optimization accuracy.

In the frequency-domain characterization, zact,i and ztar,i will be an actual gain and a required

gain, respectively, at fi. According to the frequency range of interest, the total number of frequency

points (L) should be big enough to cover all the range. Also, the frequency step (fstep) between two

adjacent frequency points should be small enough to accurately measure the difference between a

target transfer function and an actual transfer function. In this paper, it is assumed that L = 100

and the frequency points are spread evenly in a logarithmic scale from ωO/10 to 10 · ωO when the

CUO has a bandpass frequency response. Regardless of the types and orders of a CUO, L and fstep

can be set in a similar manner.

In the time-domain characterization, zact,i and ztar,i can be a settling time, peak value, or peak

time. Because we are not going to optimize the entire shape of a step response, the %RMSE does

not need to be defined over a finite set of time samples {ti} different from the %RMSE for the

frequency-domain characterization.

5.5.2 Design of the Cost Function

There are two major differences between the cost function and the %RMSE. First, unlike the

%RMSE, the cost function is based on measured characteristics. If there are significant errors in the

measurements, the %RMSE and the cost will show a significant deviation. Second, some realistic

factors of on-chip in-situ optimization should be considered for the cost function. For instance, in

the frequency-domain characterization, the total number of frequency points (M ) and fstep should

be reasonable values. If M is too big, the time that is required to complete the optimization process

will be unrealistically long. Therefore, the cost function should be designed properly.

The cost function for the frequency-domain characterization can be:

C(
−→
V ) =

M∑
i=1

αi

∣∣∣Gmeas(
−→
V , fi)−Gtar(fi)

∣∣∣+ PE(
−→
V ). (5.10)
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(a) (b)

Figure 5.7: Relation between the %RMSE and the design parameters of the cost functions. (a)
%RMSE and {M, fstep}. (b) %RMSE and ∆t. ©2018 IEEE.

Gmeas means the measured gain at
−→
V and fi; Gtar indicates the target gain at fi, which is given

by the user. To choose right values for M and fstep, the relationship between those parameters and

the %RMSE should be evaluated. Ideally, the optimization engine should always find the optimal

control vector
−−→
Vopt among

−→
V . However, in reality, it is not always possible because of several non-

idealities, which will be clarified later. If we define a sub-optimal control vector
−−→
Vsopt as a vector

that makes the normalized cost (C(
−−→
Vsopt)/C(

−−→
Vopt)) smaller than a certain criterion (Ccrit), there will

be a number of
−−→
Vsopt that satisfy the condition, and it can be assumed that the engine can discover

one of the several
−−→
Vsopt regardless of the non-idealities. In this case, the worst %RMSE(

−−→
Vsopt) can

be extracted among the various
−−→
Vsopt for each combination of M and fstep. To find all

−−→
Vsopt, C(

−→
V )

should be enumerated for all
−→
V at each M and fstep setting.

For the time-domain characterization, the cost function can be:

C(
−→
V ) =

3∑
i=1

αi |TCmeas,i − TCtar,i|+ PE.(
−→
V ) (5.11)
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TCmeas,i and TCtar,i indicate the i-th element of TCmeas and TCtar, respectively. The two TC

vectors can be defined as below.

TCmeas =[
STmeas(

−→
V ,∆t),PVmeas(

−→
V ,∆t),PTmeas(

−→
V ,∆t)

]
,

TCtar = [STtar,PVtar,PTtar] . (5.12)

In (5.12), ST, PV, and PT mean a settling time, peak value, and peak time individually. An appro-

priate ∆t can also be chosen by following the same simulation procedure discussed before.

Fig. 5.7 shows the simulation results for the cost function design. In these simulations, it is

assumed that the CUO has a 2nd-order bandpass frequency response and Ccrit = 1.5. As Fig. 5.7(a)

shows, if M and fstep are too small, the %RMSE can be large. To achieve better than 1% accuracy

in the frequency-domain characterization, {M, fstep} should be larger than or equal to {3, fbw},

where fbw = ωO/(2πQ), and the center of the frequency points is located at ωO. The relation

between the %RMSE and ∆t/TO for the CUO is revealed in Fig. 5.7(b), where TO = 2π/ωO. To

get accuracy close to 1%, ∆t should be around 1% of TO. If the time-domain characteristics are

not the primary concern, this requirement can be relaxed.

Even though we assumed that the CUO had a 2nd-order bandpass frequency response, the

analyses proposed here and the following subsections are not limited to the specific CUO. In other

words, the same analyses can be applied to any orders/types of CUOs to get valuable design infor-

mation.

5.5.3 Analysis of the Effect of Distortions

Distortions in the analog blocks can distort a cost function. As shown in Fig. 5.8, the measured

gain (Gmeas) can be represented as the summation of the actual gain (Gact) and the error (E) that

stems from the distortions of the analog blocks. In the worst case scenario, E can be so large that

Gmeas matches the target gain (Gtar) even though Gact is quite different. In this extreme case, the

cost will be close to zero according to (5.10) if there is no penalty term. However, the %RMSE
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Figure 5.8: Effect of distortions in the frequency-domain characterization. ©2018 IEEE.

is not zero because the actual transfer function is different from the target. Unfortunately, the

optimization engine operates based on the cost function, and the engine will find the
−→
V that makes

Gmeas = Gtar. Therefore, the final control vector after optimization (
−→
Vdis) can have large %RMSE

if errors originated from the distortions are big enough.

The error E can be obtained as follows. In Fig. 5.9, if the node B is connected to the ORA

through the mux, the signal at node D can be represented as below when we assume that the phases

of the three tones are the same.

yD(t) ≃ B1 cos(ωit) +B2 cos(2ωit) +B3 cos(3ωit). (5.13)

Then the magnitude of y(t) will be expressed:

Mag(yD(t)) =
√
y2I [m] + y2Q[m+ 1] = B1 +B2 +B3. (5.14)

If xD(t) also has three tones that have A1, A2, and A3 amplitudes, and if all phases of the three
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Figure 5.9: Block diagram for the distortion analysis. ©2018 IEEE.

tones are identical, Gmeas can be derived:

Gmeas =
B1 +B2 +B3

A1 + A2 + A3

=
B1

A1

× 1 +Bdisto/B1

1 + Adisto/A1

. (5.15)

Adisto = A2 + A3 and Bdisto = B2 + B3. To calculate Adisto and Bdisto, the power of 2nd- and

3rd-order harmonic distortions (HD2, HD3) should be obtained at node A, B, and D. At node A,

the power of harmonic distortions can be expressed as below [74].

HDkESG = OIPkESG − k(OIPkESG − PESG). (5.16)

Here, k = 2 or 3, and P means the power of an output main tone. Also, OIP2 and OIP3 indicate an

output intercept point for 2nd- or 3rd-order harmonic distortion individually. All terms in (5.16)

are in the dBm scale. The three tones at node A are transferred to node B.

PCUO = Gact(
−→
V , fi)

∣∣
dB

+ PESG.

HDkCUO,trans = Gact(
−→
V , kfi)

∣∣
dB

+ HDkESG. (5.17)
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(a) (b) (c)

Figure 5.10: Simulation results showing the relation between the %RMSE and OIP3H of each
block (OIP2H = 60 dBm for all blocks). (a) Simulation of the frequency-domain characterization.
OIP3HCUO = 30 dBm. (b) Simulation of the frequency-domain characterization. OIP3HESG =
OIP3HORA = PESG+20 dB. (c) Simulation of the time-domain characterization. PESG = 8.6 dBm
(−3 dBFS for a 1.2 V supply voltage). ©2018 IEEE.

Because of the output main tone of the CUO, 2nd- and 3rd-order harmonics are newly generated.

HDkCUO,self = OIPkCUO − k(OIPkCUO − PCUO). (5.18)

Approximately, HDkCUO can be expressed as the power summation of the two signals.

HDkCUO ≃ 10 log10(10
HDkCUO,trans/10 + 10HDkCUO,self/10). (5.19)

By taking the similar approach, HD2ORA and HD3ORA can be calculated for each mux setting.

After that, the power of the two harmonics can be converted to Adisto or Bdisto.

By enumerating
−→
V and calculating the distorted cost at each

−→
V ,
−→
Vdis can be found if OIP2H

and OIP3H are given for each block. In this way, %RMSE(
−→
Vdis) and linearity specifications can be

related. The relation is shown in Fig. 5.10. As indicated in Fig. 5.10(a), to maintain the %RMSE

smaller than 1% for the frequency-domain characterization, OIP3H of the ESG and ORA should

be 20 dB larger than PESG. This is equivalent to −40 dB total harmonic distortion (THD). When
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the ESG and ORA have −40 dB THD, the CUO should have −30 dB THD from Fig. 5.10(b). In

these simulations, OIP2H of all blocks are assumed very high because 2nd-order distortions are

negligible if we use fully-differential circuits.

A similar analysis can be applied to the time-domain characterization. The only difference

between the two analyses is that the input and the output of the CUO have many frequency compo-

nents in the time-domain characterization. Because most power of the CUO output is concentrated

on around a certain frequency depending on the frequency-domain characteristic of the CUO, we

can add the power of the tones near the frequency and consider it the power of a main tone. Then

2nd- and 3rd-order harmonic tones can be obtained from the main-tone power when OIP2H and

OIP3H specifications are given. The tones can be added to the original step response that does not

include any non-idealities, and the time-domain characteristics can be extracted from the realistic

waveform. Fig. 5.10(c) shows the required OIP3H for the CUO and ORA to get a certain level

of optimization accuracy in the time-domain characteristic optimization. To obtain around 1%

accuracy, OIP3H of both blocks should be more than 10 dBm.

5.5.4 Analysis of the Effect of Noise

There are many noise sources in this platform. First, the thermal and flicker noises of the ESG,

CUO, and ORA contribute to the total noise of this platform. Second, the ADC in this platform

makes noise because of the effects of its quantization and its integral and differential nonlinearities

(INL, DNL). Third, the digital computation block, which makes computation errors because of its

finite bit-width, can be considered a noise source. Since the output of the CUO is a random number

while the optimization algorithm is progressing, the errors that stem from the ADC and the digital

computation block are randomized as well and can be classified as noise.

As discussed in Section 5.4, the SA-SS hybrid algorithm is utilized in this platform. Therefore,

the effect of noise should be evaluated in the two phases (SA & SS) separately. For convenience,

the relation between the SS algorithm and the circuit noise is discussed first. Fig. 5.11 shows the

effect of noise in the SS phase. Even if the SS phase is started from the global optimum (
−−→
Vopt),

−−→
Vopt can have a bigger cost than that of its neighbors temporarily because of the noise at t = t0.
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Figure 5.11: Effect of noise in sensitivity-search optimization. ©2018 IEEE.

In this case,
−−→
Vopt will be substituted by one of its neighbors (

−→
Vn1). By following the same process,

−→
Vn1 can be replaced by another control vector at t = t1. We can consider this phenomenon a hill

climbing because the ideal cost of the newly selected control vector can be bigger than that of

the previous vector. As this illustration shows, a current control vector will keep changing to its

neighbor around
−−→
Vopt due to the fluctuation of the cost. By recording the history of the selected

control vectors and extracting the biggest %RMSE in the history, the worst-case %RMSE can be

obtained in a simulation.

In the SA phase, hill climbing can occur and local minima can be escaped even if there is

no circuit noise. Therefore, this natural hill-climbing action can be considered an “intentional

noise” injected by the algorithm itself. If the total circuit noise of this platform is not very huge

compared to the “intentional noise,” the circuit noise is not going to degrade the quality of the SA

optimization. However, near the end of the SA algorithm, the “intentional noise” is diminished a

lot, and it might be comparable to the total circuit noise. For simplicity, we assume that the SA

algorithm can find one of the sub-optimal control vectors (
−−→
Vsopt) regardless of the level of circuit

noise. Then we can focus on the effect of circuit noise in the SS phase, which was discussed in the

previous paragraph, and ignore the noise effect in the SA phase.

To simulate the effect of noise, an additive white noise model is exploited and all analog circuit
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Figure 5.12: Block diagram for the noise analysis. ©2018 IEEE.

blocks are assumed noiseless as shown in Fig. 5.12. The model includes noise from the ADC and

other analog blocks. Because the sampling speed of the ADC is much slower than the sampling

speed of the ORA, the noise appeared at the input of the ADC will be heavily aliased by the

sampling activities of the ADC. Therefore, it can be assumed that the sampled noise of the analog

blocks has a white spectrum at the output of the ADC. Other errors that stem from the ADC itself

can also be considered white noise because the input DC signal of the ADC can be any values while

the optimization is progressing as mentioned earlier. Another thing that has to be mentioned here

is that the phase noise of the sampling clock in the ORA will be ignored in this analysis. This can

be justified because the input of the ORA also has the similar phase noise and those two noises are

correlated. The correlation can be understood if we consider that the ESG and ORA receive clock

signals from the same frequency synthesizer, and the ESG does not add the significant amount of

phase noise because it is based on delay cells [66].

Simulation results are shown in Fig. 5.13. In these simulations, the same CUO was utilized

as the previous analyses, and the worst-case %RMSE was extracted after 1000 sensitivity-search

iterations. In addition, the errors from finite bit-width computations were ignored, and they will

be analyzed in Section 5.5.5. As Fig. 5.13(a) shows, if the output power of the ESG (PESG) is

0 dBm and the target gain at ωO (Gtar(ωO)) for the CUO is 0 dB, more than 47.5 dB PESG/PNoise
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(a) (b)

Figure 5.13: Simulation results that represent the relation between the %RMSE and PESG/PNoise.
(a) Simulation of the frequency-domain characterization. (b) Simulation of the time-domain char-
acterization. PESG = 8.6 dBm, and Gtar(ωO) = 0 dB. ©2018 IEEE.

is required to get the %RMSE better than 1%, where PNoise means the total noise power at node

1 in Fig. 5.12. This result means PNoise should be smaller than −47.5 dBm. If PESG is reduced

to −20 dBm and Gtar(ωO) is increased to 20 dB, PNoise should be reduced to the value smaller

than −62.5 dBm to achieve better than 1% accuracy. This tough requirement can be relaxed by

allowing a large signal that has power larger than 0 dBm at the output of the CUO. On top of that,

averaging in the digital domain can be exploited. This will be discussed in Section 5.5.6.

Fig. 5.13(b) reveals the required PESG/PNoise to achieve a certain level of accuracy for the

time-domain characterization. In these simulations, a relatively large square wave (8.6 dBm) was

exploited because most power of the wave is concentrated on a low-frequency range, and the

low-frequency part is heavily attenuated by the CUO. If we consider that the time-domain charac-

teristics are extracted from the output of the CUO only, the input power and the target gain of the

CUO do not need to be changed while maintaining the output power of the CUO. As the simulation
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results show, if the noise level is −47.5 dBm, the worst-case %RMSE will be around 9%.

5.5.5 Analysis of Bit Widths for Digital Computation Blocks

To compute a cost for the frequency-domain characterization, five arithmetic operations should

be supported in the digital domain: addition, subtraction, multiplication, division, and square root.

On top of these operations, the optimization algorithm shown in Algorithm 1 requires an exponen-

tial operation, random number generation, and other simple operations. Because the exponential

operation can be approximated to a linear equation, it is not a mandatory operation. Also, a random

number can be easily generated from a pseudo random number generator, such as a linear-feedback

shift register. If we consider that all operations needed for the cost calculation and the optimization

can be implemented in an area-efficient way except the multiplication, division, and square root

operation, it can be assumed that all operations except those three can support full resolution. For

instance, if we define one word as two bytes (16-bit), all operations except those three should sup-

port a 16-bit input, output, or both. Based on this assumption, we can focus only on the accuracy

of the cost calculation. This is because the optimization algorithm shown in Algorithm 1 utilizes

the three operations only at Step 10 and 14, and calculating a precise probability of a hill climbing

at those steps is less important than getting an accurate cost.

Since the magnitude of x(t) and y(t) in Fig. 5.12 can be any real numbers, each computation

block should support one of the two real number representations: fixed-point or floating-point. In

this analysis, it is assumed that each computation block has a fixed-point representation because of

its simplicity.

To quantify the error caused by the finite-bit width of each computation block, a signal-to-noise

ratio (SNR) should be defined first. When the ideal and finite-bit-width output of each computation

are Y and Ŷ , signal and noise power can be defined as a mean-square of Y and Ŷ −Y individually

as below.

Psignal =
1

n

n∑
i=1

Y 2
i , Perror =

1

n

n∑
i=1

(
Ŷi − Yi

)2
. (5.20)
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Figure 5.14: Digital computation flow and bit width at each node. ©2018 IEEE.

Then the SNR can be expressed as a ratio of the two.

Fig. 5.14 shows the entire digital computation flow and the bit width of each block in the

frequency-domain characterization. Each node has an I integer-bit width and F fraction-bit width.

Since the addition and subtraction support full resolution (16-bit) as mentioned earlier, the bits at

node 3 and 4 should be expended and truncated, respectively.

While changing the bit widths, the SNR at node 3 and 7 in Fig. 5.14 can be calculated. Because

there are too many variables, some assumptions should be made as summarized in Table 5.1. In

addition, the table shows simulation results, which reveal the relation between the SNR and the bit

widths (F2, F3). In these simulations, xI and xQ were sampled from a 0 dBm sinusoidal signal.

Also, yI and yQ were extracted from a sinusoidal signal which has random power from −20 dBm

to 6 dBm. The phases of the sampling clocks for x(t) and y(t) were given randomly as well. As

the table indicates, F2 and F3 should be larger than or equal to 2 and 9, respectively, to achieve

around 55 dB SNR at nodes 3 and 7.

To compare noise that is generated from the analog circuits and the digital computations, the

SNR transfer from node 1 to nodes 3 and 7 in Fig. 5.14 should be evaluated. We are considering
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Table 5.1: Remarks and Simulation Results of the Bit-Width Analysis for Digital Computations.
©2018 IEEE.

Item Value Remark
I1 10 Discussed in Section 5.5.6
F1 0 Assume that the output of an ADC is an integer

I2 11
Maximum output value of CORDIC =

√
2× maximum in-

put value of CORDIC
F2 Varied in simulations
I3 2 Maximum gain of a CUO = 12 dB
F3 Varied in simulations
I4 I3 An assumption for simplicity
F4 F3 An assumption for simplicity (F3=F4=F6)
I5 2 Maximum value for α = 2
F5 8 Dynamic range for α = 9-bit
I6 3 I4(=I3) = 2, and maximum value for α = 2
F6 F4 An assumption for simplicity (F3=F4=F6)

Item Value Simulation Result

F2, F3

(0,6) (SNR@3, SNR@7) = (39.9 dB, 39.0 dB)
(0,9) (SNR@3, SNR@7) = (44.3 dB, 43.4 dB)
(1,6) (SNR@3, SNR@7) = (41.3 dB, 38.9 dB)
(1,9) (SNR@3, SNR@7) = (51.0 dB, 50.6 dB)
(2,6) (SNR@3, SNR@7) = (41.7 dB, 38.7 dB)
(2,9) (SNR@3, SNR@7) = (55.0 dB, 54.3 dB)
(3,6) (SNR@3, SNR@7) = (41.8 dB, 38.3 dB)
(3,9) (SNR@3, SNR@7) = (58.0 dB, 55.7 dB)

here a SNR transfer instead of a noise transfer because the power of the signal is also converted

while it is processed by the digital circuits. From a computer simulation, a 0 dB SNR transfer was

observed at nodes 3 and 7 when there were no errors that come from the digital blocks. Therefore,

if we have a 50 dB SNR at node 1, the SNR will be still 50 dB at node 7. If we consider that the

total power of errors produced by the digital circuits will be 54.3 dB smaller than the signal power

at node 7 when (F2, F3) = (2, 9), the total SNR at node 7 including all noise from the analog

circuits and the digital computation errors will be 48.6 dB, which is equivalent to the %RMSE

smaller than 1% from Fig. 5.13.

In the time-domain characterization, computations of a square root and division are not needed

because the magnitudes and the gain do not need to be calculated anymore. Therefore, the output

of the ADC and node 3 in Fig. 5.14 should be connected directly. If F4(=F6) is bigger than or equal

to 9, the SNR at node 7 will be better than 54.3 dB at least because the results in Table 5.1 include
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Table 5.2: Summary of Noise and Linearity Requirements. ©2018 IEEE.

PESG Averaging
PNoise Before Averaging PNoise After

Averaging
Required Max
ENOB for an ADC

Min |THD| for an
ESG and ORA

Min |THD| for a
CUOPNoise,Ana PNoise,ADC

0 dBm X −53 dBm −53 dBm N/A 10.47-bit 40 dB 30 dB
6 dBm X −47 dBm −47 dBm N/A 9.47-bit 40 dB 30 dB
0 dBm 4-point −47 dBm −47 dBm −50 dBm 9.47-bit 40 dB 30 dB

all errors that originate from the CORDIC and the divider.

5.5.6 Overall Linearity & Noise Requirements and Averaging

Noise and linearity requirements are summarized in Table 5.2. When PESG is 0 dBm, PNoise

should be smaller than −50 dBm to obtain 1% accuracy in the frequency-domain characterization

as discussed in Section 5.5.4. If we divide this specification evenly between the ADC (PNoise,ADC)

and the other analog circuit blocks (PNoise,Ana), each part should have smaller than −53 dBm

noise power. If we assume that the peak SNDR of the ADC can be obtained at 0 dBFS, the

required maximum ENOB for the ADC will be 10.47-bit for the 1.2 V supply voltage because

0 dBFS = 11.6 dBm.

There are two approaches that relax the noise requirement. The first approach is increasing

PESG. For example, if PESG is increased up to 6 dBm, the required ENOB of the ADC can be

9.47-bit as shown in Table 5.2. However, maintaining −40 dB THD for the ESG and the ORA,

and−30 dB THD for the CUO will be more demanding because the power of harmonic tones grow

more quickly than the power of a main tone. The second approach is averaging the outputs of the

ADC. If the window size for the averaging is 2n, the reduction of noise power is 3n dB. Therefore,

the required SNR at the output of the ADC can be relaxed to 44 dB when 4-point averaging is

utilized. In this scenario, the required ENOB for the ADC will be 9.47-bit when PESG = 0 dBm.

In the time-domain characteristic optimization, a full-scale square wave can be utilized to stim-

ulate the CUO because the linearity requirements are more relaxed compared to the requirements

of the frequency-domain characterization as shown in Fig. 5.10. In this case, PESG/PNoise can be

more than 60 dB if PNoise equals −50 dBm and the 1.2 V supply voltage is utilized. Overall, all

requirements summarized in Table 5.2 can also guarantee around 1% accuracy in the time-domain
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characterization, if ∆t is small enough.

5.6 System Verification

To show the feasibility of this platform, the Tow-Thomas bandpass biquad shown in Fig. 5.5(a)

is utilized in this case study. Unlike the conventional tuning/calibration approaches introduced

in [56–58], the biquad includes a control knob that changes the GBW of op-amps. Because this

platform does not depend on any characteristics of linear time-invariant CUOs, we choose the

biquad as a simple example in this section to clearly prove the concept of this platform. Once it

proves that the simple example can be optimized, this platform can be applicable to more complex

CUOs without an additional area overhead. For instance, if a biquad can be optimized in this

platform, high-order filters that consist of any number of cascaded biquads can also be optimized

by the same process.

Also, this platform is not very complex for analog circuit designers to exploit. Once the de-

signers have an accurate model of this platform, which is discussed in Section 5.5, the underlying

algorithm (SA-SS) of this system can be designed and be verified relatively easily in simulations

because it has only a few parameters as discussed in Section 5.4. The only things the designers

need to focus on are developing a suitable cost function based on specifications and determining

appropriate control knobs.

5.6.1 Verification Through System-Level Simulations

A realistic model of the biquad is used in this system-level simulations. If we model each

op-amp in Fig. 5.5(a) as a two-pole system and assume that it has a 50 dB DC gain and second

pole at GBW , the filter transfer function will have six poles and three zeros. Based on the system

equation, a mathematical model for the filter can be developed and utilized. This model has four

control knobs [x′
GBW , x′

G, x
′
Q, x

′
ωO

], and each one has 5 bits. The 1-LSB and the center value for

x′
GBW are 35 MHz and 600 MHz, respectively. x′

G and x′
Q change R1 and R3 individually and

have 1 KΩ 1-LSBs and 22 KΩ center values. x′
ωO

modifies C1 and C2 simultaneously and has

50 fF 1-LSB and 1.95 pF center value. The relatively small 1-LSBs for the R & C components are
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used on purpose to show the fine optimization capability of this platform at certain levels of noise

and distortions.

In addition, to mimic PVT variations and device aging, the simulations include several non-

ideal factors. Normal distributions that have 10% standard deviations (σ) of original values are

applied to the 1-LSBs and to the center values of all R & C components and the GBW . Also, the

simulations meet the noise and linearity requirements shown in the second row of Table 5.2.

Fig. 5.16(a)-(f) represent 100 Monte-Carlo simulation results of the case study. In the figure,

white bars depict characteristics of 100 samples before optimization, whereas black bars stand for

characteristics after optimization. Based on the data distribution, approximated probability density

functions (PDFs) are plotted in the form of solid and dotted curves on top of the histogram. Also,

outliers are excluded to obtain a well-matched solid curve around a mean value. As the figure

indicates, on average, the GBW of op-amps and the σ of the five characteristics are reduced by

80% and 82%, respectively. If we consider that the ratio between the GBW and ωO/2π is 36.3

in [58] and 71.1 in [9], the optimized CUO has relatively small GBW (GBW/(ωO/2π) = 22.9)

without employing any circuit techniques. Since the power consumption (GBW ) of each sample

is minimized while the same five frequency- and time-domain characteristics are maintained, the

actual operating point of each sample is located at the edge of its operation limit, which verifies

the strength of this platform. The relatively large deviation in the GBW after optimization can be

understood if we recall that the value is optimized indirectly as a penalty in the cost function.

In the system-level simulations, only one trial of optimization takes place for each sample.

Even though the results show small characteristic deviations after optimization, there are still a

small number of outliers in the histogram. These outliers cannot be avoided 100% because Algo-

rithm 1 operates on the basis of randomness. Therefore, multiple trials are needed for the excep-

tional outliers as discussed in Section 5.4.

Because the evaluations of
−→
V take most time in the entire optimization process, the total num-

ber of the evaluations determines the algorithm efficiencies in comparison between the proposed

and the other approaches introduced in Section 5.4. From the simulation results, one trial of op-
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Figure 5.15: Integrated circuit prototype and measurement results. (a) Die photogarph. (b) Nor-
malized cost function values over the 2-dimensional search space, and visited points selected by the
optimization engine (dots). (c) Optimization result when the biquad has high power consumption
(dotted line) & minimum power consumption (solid line). ©2018 IEEE.

timization requires around 1500 evaluations. If we compare this number to the values from the

brute-force method and from the semi-orthogonal tuning in Section 5.4, more than 99% and 50%

reductions are observed, respectively.

5.6.2 Integrated Circuit Prototype & Measurement Results

Fig. 5.15(a) shows an IC prototype of the self-contained system. The prototype was fabricated

in 0.18 µm standard CMOS technology. Fig. 5.15(b) presents the measured values of the cost
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Figure 5.16: Reduction of power consumption and standard deviations of multiple characteristics
of a biquad. White bars: 100 samples before optimization; Black bars: 100 samples after opti-
mization. (a) Gain @ ωO. (b) ωO/2π. (c) Q. (d) Peak value when a step input is applied. (e) 5%
settling time. (f) GBW. ©2018 IEEE.

function over 2-dimensional search space. For convenience, x′
GBW and x′

G are fixed. In this figure,

black dots indicate visited points selected by the optimization engine. Because of the finite bit

width discussed in Section 5.5.5, cost function values that are larger than the maximum limit are

trimmed to the maximum value. As we can see, an intensive search is conducted around the optimal

point [x′
Q, x

′
ωO

]=[20, 23]. After optimization, around 71% power reduction can be achieved while

other biquad specifications are maintained as shown in Fig. 5.15(c).

Table 5.3 compares this platform with other tuning platforms that use optimization algorithms.

The main contribution of this paper is that all building blocks, including an ESG, an ORA, and an
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Table 5.3: Comparison of Tuning/Calibration Platforms Which Utilize Optimization Algorithms.
©2018 IEEE.

Ref. Algorithm

Algorithm
complexity
(the number of
If-Else-Then)

Chance to find a global optimum
Fully in-
tegrated
on a chip

Accuracy
analyses
of building
blocks

[61] MSGD* Low Low if control knobs are non-orthogonal [62] No No
[62] NM-NS** Hybrid High Low in general, but can be high with an initial grid No No
[63] NM-HJ*** Hybrid High Low in general, but can be high with an initial grid No No
[64] GA High High (global optimizer) No No

This work SA-SS Hybrid Low High (hybird of global and local optimizers) Yes Yes
*Multi-Start Gradient Descent ** Nelder-Mead Neighborhood-Search *** Nelder-Mead Hooke-Jeeves

optimization engine, are integrated in a single chip, proving the on-chip, in-situ operation of this

platform. The optimization algorithm is selected in terms of the efficiency of hardware implemen-

tation.

5.6.3 Strengths of This Platform

Operating the Tow-Thomas (TT) biquad efficiently is a very active research topic. Unlike

[9, 58], our work does not rely on a master-slave approach; our optimization can be beyond the

conventional Q and ωO tuning and can use GBW as a design parameter. Thus, we can drasti-

cally reduce the GBW while monitoring that the filter is stable and meets for instance the Q and

ωO specifications. Other specifications such as linearity requirements can be accomplished by in-

creasing the minimum GBW without having excessive margins. That is equivalent to finding the

minimum power consumption that satisfies all requirements. In addition, thanks to the versatility

and the efficiency of the optimization engine, various characteristics of a CUO can be programmed

based on users’ need within ranges of control knobs. To the best of authors’ knowledge, this ap-

proach was not available before.

5.7 Conclusion

A built-in self-test and in-situ analog circuit optimization platform has been proposed and

characterized. Different from the conventional on-chip direct tuning/calibration methods dedicated

to a specific characteristic, this platform seamlessly and efficiently optimizes programmable circuit

characteristics as a whole. As a result, the CUO can have and maintain well-balanced optimal
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characteristics even in severe PVT variations and device aging. Because this platform does not

depend on special characteristics of the CUO, any linear time-invariant circuits can be the CUO.
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6. CONCLUSION

This dissertation investigates two approaches that overcome the limitations of previous works

on in situ analog circuit calibration/tuning. The first limitation is that there are still several analog

circuits that have not been calibrated/tuned by an in situ automatic calibration/tuning circuit. [3]

gets over the limitation by proposing an in situ calibration circuit for a current reference to relax the

trade-off between the accuracy and the power consumption of the current reference. To the best of

the author’s knowledge, [3] is the first work that shows a successful in situ calibration of a current

reference while keeping the power consumption of the current reference down to 4.5 nW at the

same time. The second limitation is that calibration/tuning techniques that have been researched

so far deal with only one circuit characteristic, leading to a suboptimal circuit. [4] surmounts the

limitation by proposing an in situ analog circuit optimization platform that optimizes multiple

competing circuit characteristics simultaneously. To the best of the author’s knowledge, the plat-

form is the first fully-integrated in situ optimization system for analog circuits. The measurement

and simulation results of the circuits proposed in [3, 4] prove that the calibration and optimiza-

tion techniques can relax sharp trade-offs among circuit characteristics and help analog circuits

achieve better performance and robustness. As these research show, in situ analog circuit calibra-

tion and optimization techniques have been less researched and still have huge research potential.

For example, an in situ analog circuit optimization platform that can optimize the linearity, noise,

and power consumption of multiple analog/RF circuits can be a good extension of [4] because the

platform can be utilized to optimize performance of an RF transceiver over PVT variations.
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