23 research outputs found

    Swarm Robotics, or: The Smartness of 'a bunch of cheap dumb things'

    Get PDF
    Not only recent Science Fiction – e.g., Star Trek Beyond (USA 2016) – celebrates the capacities of robot collectives. Also RoboCup, an annual robot soccer competition, or Harvard University’s Kilobot Project show stunning examples of the central idea behind Swarm Robotics: »[U]sing swarms is the same as getting a bunch of small cheap dumb things to do the same job as an expensive smart thing« (Beni/Wang 1989). This article examines some crucial aspects of the techno-history of a research field which intertwines engineering and biological knowledge and whose applications deal with compelling questions about synchronization and self-organization in changing environments – on the ground, in the air, and under water

    Swarm Robotics, or: The Smartness of \u27a bunch of cheap dumb things\u27

    Get PDF
    Not only recent Science Fiction – e.g., Star Trek Beyond (USA 2016) – celebrates the capacities of robot collectives. Also RoboCup, an annual robot soccer competition, or Harvard University’s Kilobot Project show stunning examples of the central idea behind Swarm Robotics: »[U]sing swarms is the same as getting a bunch of small cheap dumb things to do the same job as an expensive smart thing« (Beni/Wang 1989). This article examines some crucial aspects of the techno-history of a research field which intertwines engineering and biological knowledge and whose applications deal with compelling questions about synchronization and self-organization in changing environments – on the ground, in the air, and under water

    UAV/UGV Autonomous Cooperation: UAV Assists UGV to Climb a Cliff by Attaching a Tether

    Full text link
    This paper proposes a novel cooperative system for an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) which utilizes the UAV not only as a flying sensor but also as a tether attachment device. Two robots are connected with a tether, allowing the UAV to anchor the tether to a structure located at the top of a steep terrain, impossible to reach for UGVs. Thus, enhancing the poor traversability of the UGV by not only providing a wider range of scanning and mapping from the air, but also by allowing the UGV to climb steep terrains with the winding of the tether. In addition, we present an autonomous framework for the collaborative navigation and tether attachment in an unknown environment. The UAV employs visual inertial navigation with 3D voxel mapping and obstacle avoidance planning. The UGV makes use of the voxel map and generates an elevation map to execute path planning based on a traversability analysis. Furthermore, we compared the pros and cons of possible methods for the tether anchoring from multiple points of view. To increase the probability of successful anchoring, we evaluated the anchoring strategy with an experiment. Finally, the feasibility and capability of our proposed system were demonstrated by an autonomous mission experiment in the field with an obstacle and a cliff.Comment: 7 pages, 8 figures, accepted to 2019 International Conference on Robotics & Automation. Video: https://youtu.be/UzTT8Ckjz1

    Folding Knots Using a Team of Aerial Robots

    Full text link
    From ancient times, humans have been using cables and ropes to tie, carry, and manipulate objects by folding knots. However, automating knot folding is challenging because it requires dexterity to move a cable over and under itself. In this paper, we propose a method to fold knots in midair using a team of aerial vehicles. We take advantage of the fact that vehicles are able to fly in between cable segments without any re-grasping. So the team grasps the cable from the floor, and releases it once the knot is folded. Based on a composition of catenary curves, we simplify the complexity of dealing with an infinite-dimensional configuration space of the cable, and formally propose a new knot representation. Such representation allows us to design a trajectory that can be used to fold knots using a leader-follower approach. We show that our method works for different types of knots in simulations. Additionally, we show that our solution is also computationally efficient and can be executed in real-time.Comment: International Conference on Intelligent Robots and Systems, IROS 2022, Kyoto, Japan, Oct 23 - Oct. 27, 202

    Scalable underwater assembly with reconfigurable visual fiducials

    Full text link
    We present a scalable combined localization infrastructure deployment and task planning algorithm for underwater assembly. Infrastructure is autonomously modified to suit the needs of manipulation tasks based on an uncertainty model on the infrastructure's positional accuracy. Our uncertainty model can be combined with the noise characteristics from multiple devices. For the task planning problem, we propose a layer-based clustering approach that completes the manipulation tasks one cluster at a time. We employ movable visual fiducial markers as infrastructure and an autonomous underwater vehicle (AUV) for manipulation tasks. The proposed task planning algorithm is computationally simple, and we implement it on AUV without any offline computation requirements. Combined hardware experiments and simulations over large datasets show that the proposed technique is scalable to large areas.Comment: Submitted to ICRA 202

    Structure Assembly by a Heterogeneous Team of Robots Using State Estimation, Generalized Joints, and Mobile Parallel Manipulators

    Get PDF
    Autonomous robotic assembly by mobile field robots has seen significant advances in recent decades, yet practicality remains elusive. Identified challenges include better use of state estimation to and reasoning with uncertainty, spreading out tasks to specialized robots, and implementing representative joining methods. This paper proposes replacing 1) self-correcting mechanical linkages with generalized joints for improved applicability, 2) assembly serial manipulators with parallel manipulators for higher precision and stability, and 3) all-in-one robots with a heterogeneous team of specialized robots for agent simplicity. This paper then describes a general assembly algorithm utilizing state estimation. Finally, these concepts are tested in the context of solar array assembly, requiring a team of robots to assemble, bond, and deploy a set of solar panel mockups to a backbone truss to an accuracy not built into the parts. This paper presents the results of these tests

    Economic Design of Things

    Get PDF
    Economics is a social science, so is economic design as a field. This short article discusses, in particular, the future of economic design, and of economic theory in general. By suggesting some examples, I hope to convince the readers that the recent technological advances in science and technology will not only be disruptive to the social machinery that surrounds us but also to the future of economic design as a field. However, economic design, as an established field, has the potential to add value to the society by offering an axiomatic framework to the design of the future with a social sciences perspective

    Robot Tape Manipulation for 3D Printing

    Full text link
    3D printing has enabled various applications using different forms of materials, such as filaments, sheets, and inks. Typically, during 3D printing, feedstocks are transformed into discrete building blocks and placed or deposited in a designated location similar to the manipulation and assembly of discrete objects. However, 3D printing of continuous and flexible tape (with the geometry between filaments and sheets) without breaking or transformation remains underexplored and challenging. Here, we report the design and implementation of a customized end-effector, i.e., tape print module (TPM), to realize robot tape manipulation for 3D printing by leveraging the tension formed on the tape between two endpoints. We showcase the feasibility of manufacturing representative 2D and 3D structures while utilizing conductive copper tape for various electronic applications, such as circuits and sensors. We believe this manipulation strategy could unlock the potential of other tape materials for manufacturing, including packaging tape and carbon fiber prepreg tape, and inspire new mechanisms for robot manipulation, 3D printing, and packaging

    Design of in-Situ Lightweight Structure with Autonomous Robot Traveling on 3-Dimensional Curved Rod

    Get PDF
    University of Tokyo(東京大学
    corecore