1,755 research outputs found

    Resource Oriented Modelling: Describing Restful Web Services Using Collaboration Diagrams

    No full text
    The popularity of Resource Oriented and RESTful Web Services is increasing rapidly. In these, resources are key actors in the interfaces, in contrast to other approaches where services, messages or objects are. This distinctive feature necessitates a new approach for modelling RESTful interfaces providing a more intuitive mapping from model to implementation than could be achieved with non-resource methods. With this objective we propose an approach to describe Resource Oriented and RESTful Web Services based on UML collaboration diagrams. Then use it to model scenarios from several problem domains, arguing that Resource Oriented and RESTful Web Services can be used in systems which go beyond ad-hoc integration. Using the scenarios we demonstrate how the approach is useful for: eliciting domain ontologies; identifying recurring patterns; and capturing static and dynamic aspects of the interface

    REST and Linked Data: a match made for domain driven development?

    No full text
    At a first glance there might appear to be an obvious alignment and overlap between the approaches prescribed by REST and Linked Data. On more detailed inspection divergences in scope and applicability present themselves, and for some aspects, incompatibility. In this paper we investigate these similarities and differences and suggest the coupling is worthy of a third look: in combination as a flexible environment in which the developer can focus on domain driven applications

    Grounding semantic web services with rules

    Get PDF
    Semantic web services achieve effects in the world through web services, so the connection to those services - the grounding - is of paramount importance. The established technique is to use XML-based translations between ontologies and the SOAP message formats of the services, but these mappings cannot address the growing number of non-SOAP services, and step outside the ontological world to describe the mapping. We present an approach which draws the service's interface into the ontology: we define ontology objects which represent the whole HTTP message, and use backward-chaining rules to translate between semantic service invocation instances and the HTTP messages passed to and from the service. We present a case study using Amazon's popular Simple Storage Service

    Programming patterns and development guidelines for Semantic Sensor Grids (SemSorGrid4Env)

    No full text
    The web of Linked Data holds great potential for the creation of semantic applications that can combine self-describing structured data from many sources including sensor networks. Such applications build upon the success of an earlier generation of 'rapidly developed' applications that utilised RESTful APIs. This deliverable details experience, best practice, and design patterns for developing high-level web-based APIs in support of semantic web applications and mashups for sensor grids. Its main contributions are a proposal for combining Linked Data with RESTful application development summarised through a set of design principles; and the application of these design principles to Semantic Sensor Grids through the development of a High-Level API for Observations. These are supported by implementations of the High-Level API for Observations in software, and example semantic mashups that utilise the API

    Semantic processing of EHR data for clinical research

    Get PDF
    There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data.Comment: Accepted for publication in Journal of Biomedical Informatics, 2015, preprint versio

    Research and Development Workstation Environment: the new class of Current Research Information Systems

    Get PDF
    Against the backdrop of the development of modern technologies in the field of scientific research the new class of Current Research Information Systems (CRIS) and related intelligent information technologies has arisen. It was called - Research and Development Workstation Environment (RDWE) - the comprehensive problem-oriented information systems for scientific research and development lifecycle support. The given paper describes design and development fundamentals of the RDWE class systems. The RDWE class system's generalized information model is represented in the article as a three-tuple composite web service that include: a set of atomic web services, each of them can be designed and developed as a microservice or a desktop application, that allows them to be used as an independent software separately; a set of functions, the functional filling-up of the Research and Development Workstation Environment; a subset of atomic web services that are required to implement function of composite web service. In accordance with the fundamental information model of the RDWE class the system for supporting research in the field of ontology engineering - the automated building of applied ontology in an arbitrary domain area, scientific and technical creativity - the automated preparation of application documents for patenting inventions in Ukraine was developed. It was called - Personal Research Information System. A distinctive feature of such systems is the possibility of their problematic orientation to various types of scientific activities by combining on a variety of functional services and adding new ones within the cloud integrated environment. The main results of our work are focused on enhancing the effectiveness of the scientist's research and development lifecycle in the arbitrary domain area.Comment: In English, 13 pages, 1 figure, 1 table, added references in Russian. Published. Prepared for special issue (UkrPROG 2018 conference) of the scientific journal "Problems of programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine

    Semantic annotation of Web APIs with SWEET

    Get PDF
    Recently technology developments in the area of services on the Web are marked by the proliferation of Web applications and APIs. The development and evolution of applications based on Web APIs is, however, hampered by the lack of automation that can be achieved with current technologies. In this paper we present SWEET - Semantic Web sErvices Editing Tool - a lightweight Web application for creating semantic descriptions of Web APIs. SWEET directly supports the creation of mashups by enabling the semantic annotation of Web APIs, thus contributing to the automation of the discovery, composition and invocation service tasks. Furthermore, it enables the development of composite SWS based applications on top of Linked Data
    corecore