33,616 research outputs found

    An Efficient Multiway Mergesort for GPU Architectures

    Full text link
    Sorting is a primitive operation that is a building block for countless algorithms. As such, it is important to design sorting algorithms that approach peak performance on a range of hardware architectures. Graphics Processing Units (GPUs) are particularly attractive architectures as they provides massive parallelism and computing power. However, the intricacies of their compute and memory hierarchies make designing GPU-efficient algorithms challenging. In this work we present GPU Multiway Mergesort (MMS), a new GPU-efficient multiway mergesort algorithm. MMS employs a new partitioning technique that exposes the parallelism needed by modern GPU architectures. To the best of our knowledge, MMS is the first sorting algorithm for the GPU that is asymptotically optimal in terms of global memory accesses and that is completely free of shared memory bank conflicts. We realize an initial implementation of MMS, evaluate its performance on three modern GPU architectures, and compare it to competitive implementations available in state-of-the-art GPU libraries. Despite these implementations being highly optimized, MMS compares favorably, achieving performance improvements for most random inputs. Furthermore, unlike MMS, state-of-the-art algorithms are susceptible to bank conflicts. We find that for certain inputs that cause these algorithms to incur large numbers of bank conflicts, MMS can achieve up to a 37.6% speedup over its fastest competitor. Overall, even though its current implementation is not fully optimized, due to its efficient use of the memory hierarchy, MMS outperforms the fastest comparison-based sorting implementations available to date

    External-Memory Algorithms for Processing Line Segments in Geographic Information Systems

    Get PDF
    The original publication is available at www.springerlink.comIn the design of algorithms for large-scale applications it is essential to consider the problem of minimizing I/O communication. Geographical information systems (GIS) are good examples of such large-scale applications as they frequently handle huge amounts of spatial data. In this paper we develop e cient new external-memory algorithms for a number of important problems involving line segments in the plane, including trapezoid decomposition, batched planar point location, triangulation, red-blue line segment intersection reporting, and general line segment intersection reporting. In GIS systems, the rst three problems are useful for rendering and modeling, and the latter two are frequently used for overlaying maps and extracting information from them

    GPU LSM: A Dynamic Dictionary Data Structure for the GPU

    Full text link
    We develop a dynamic dictionary data structure for the GPU, supporting fast insertions and deletions, based on the Log Structured Merge tree (LSM). Our implementation on an NVIDIA K40c GPU has an average update (insertion or deletion) rate of 225 M elements/s, 13.5x faster than merging items into a sorted array. The GPU LSM supports the retrieval operations of lookup, count, and range query operations with an average rate of 75 M, 32 M and 23 M queries/s respectively. The trade-off for the dynamic updates is that the sorted array is almost twice as fast on retrievals. We believe that our GPU LSM is the first dynamic general-purpose dictionary data structure for the GPU.Comment: 11 pages, accepted to appear on the Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS'18
    • …
    corecore