5 research outputs found

    Using Coh-Metrix to Analyse Writing Skills of Students: A Case Study in a Technological Common Core Curriculum Course

    Get PDF
    Pedagogy with learning analytics is shown to facilitate the teaching-learning process through analysing student’s behaviours. In this paper, we explore the possibility of using a computational linguistic tool Coh-Metrix for analyzing and improving writing skills of students in a technological common core curriculum course. In this study, we mainly focused on the investigation of syntactic simplicity, word concreteness, referential cohesion, and deep cohesion of student’s essays. We studied 25 essays from the three-year curriculum students and 26 essays from the four-year curriculum students. Results illustrate the necessity of improving student’s writing skills in their university learning, so that they can effectively circulate their ideas to the public in the future.published_or_final_versio

    A literature synthesis of personalised technology-enhanced learning: what works and why

    Get PDF
    Personalised learning, having seen both surges and declines in popularity over the past few decades, is once again enjoying a resurgence. Examples include digital resources tailored to a particular learner’s needs, or individual feedback on a student’s assessed work. In addition, personalised technology-enhanced learning (TEL) now seems to be attracting interest from philanthropists and venture capitalists indicating a new level of enthusiasm for the area and a potential growth industry. However, these industries may be driven by profit rather than pedagogy, and hence it is vital these new developments are informed by relevant, evidence-based research. For many people, personalised learning is an ambiguous and even loaded term that promises much but does not always deliver. This paper provides an in-depth and critical review and synthesis of how personalisation has been represented in the literature since 2000, with a particular focus on TEL. We examine the reasons why personalised learning can be beneficial and examine how TEL can contribute to this. We also unpack how personalisation can contribute to more effective learning. Lastly, we examine the limitations of personalised learning and discuss the potential impacts on wider stakeholders

    Utility-Oriented Placement of Actuator Nodes with a Collaborative Serving Scheme for Facilitated Business and Working Environments

    Get PDF
    Places to be served by cyber-physical systems (CPS) are usually distributed unevenly over the area. Thus, different areas usually have different importance and values of serving. In other words, serving power can be excessive or insufficient in practice. Therefore, actuator nodes (ANs) in CPS should be focused on serving around points of interest (POIs) with considerations of “service utility.” In this paper, a utility-oriented AN placement framework with a collaborative serving scheme is proposed. Through spreading serving duties among correctly located ANs, deployment cost can be reduced, utility of ANs can be fully utilized, and the system longevity can be improved. The problem has been converted into a binary integer linear programming optimization problem. Service fading, 3D placements, multiscenario placements, and fault-tolerant placements have been modeled in the framework. An imitated example of a CPS deployment in a smart laboratory has been used for evaluations.published_or_final_versio

    Building an Intelligent Laboratory Environment via a Cyber-Physical System

    Get PDF
    Activities in laboratories, workshops, and offices can be significantly affected by their ambiance and environmental conditions, such as lighting, humidity, and temperature. This research focuses on laboratories and aims to improve people's performance of activities inside them. To this end, we have developed a cyber-physical system (CPS) for a smart/intelligent laboratory environment which is able to dynamically and automatically interpret and regulate environmental conditions. In this paper, we present the CPS development framework. The proposed CPS can measure, analyze, and regulate the thermal comfort. In order to prolong the lifetime of the system, mechanisms for low-volume communication, distributed computation, and habit-based adaptive control are proposed. Evaluations of an on-site deployment verify the functionality of the proposed CPS. Although our focus is on laboratories, this research can be applied to other similar environments, which are intended to support human performance and productivity, and has implications for the creation of smart cities. © 2013 Chi-Un Lei et al.link_to_subscribed_fulltex
    corecore