6 research outputs found

    An approach to a reference model for a sentient smart city

    Get PDF
    The interest about Smart City concept has in creased in recent years. In fact, Smart Cities is ex pected to improve cityzens life experience by driv ing the next digital revolution, moving from the personal area (mobile computing, smart home) to the urban area (collective computing and collective intelligence). But the development of Smart Cities is not being as fast as expected. Several problems need to be undertaken in order to achieve the ob jectives of the paradigm. This paper presents an approach to address one of these problems: to or chestrate the platform that is required for gathering information about city, store it in a model and ena ble it for exploitation. The heterogeneity of the po tential data sources available and the complexity of the information nature and structure, make it a non trivial task that have to be solved before commer cial solutions appear and provide specific and non interoperable solutions

    Smart cities: a survey

    Get PDF
    A smart city is one that uses a smart system characterized by the interaction between infrastructure, capital, behaviors and cultures, achieved through their integration. From our survey of the smart city concept by reading recent papers in this field, we found no uniform concept of the smart city; some papers discussed it as a general case study, while others dealt with specific parts. This paper is a survey of a number of articles , which we divided into two categories:1-General case study, which covers the topic of smart city in a general framework, and 2-Specific case study, which covers the topic of the smart city from a specific detailed application, such as Traffic Management System, Smart Grid, Wireless Technology,…etc. The results of our research show that the information of communication technology (ICT) covers all areas on smart cities such as government facilities, buildings, traffic, electricity, health, water, and transport. Until now there is no unique definition for smart cities, most of researcher define the smart city form their needs or prospective

    Combining Cloud and sensors in a smart city environment

    Get PDF
    International audienceIn the current worldwide ICT scenario, a constantly growing number of ever more powerful devices (smartphones, sensors, household appliances, RFID devices, etc.) join the Internet, significantly impacting the global traffic volume (data sharing, voice, multimedia, etc.) and foreshadowing a world of (more or less) smart devices, or "things" in the Internet of Things (IoT) perspective. Heterogeneous resources can be aggregated and abstracted according to tailored thing-like semantics, thus enabling Things as a Service paradigm, or better a "Cloud of Things". In the Future Internet initiatives, sensor networks will assume even more of a crucial role, especially for making smarter cities. Smarter sensors will be the peripheral elements of a complex future ICT world. However, due to differences in the "appliances" being sensed, smart sensors are very heterogeneous in terms of communication technologies, sensing features and elaboration capabilities. This article intends to contribute to the design of a pervasive infrastructure where new generation services interact with the surrounding environment, thus creating new opportunities for contextualization and geo-awareness. The architecture proposal is based on Sensor Web Enablement standard specifications and makes use of the Contiki Operating System for accomplishing the IoT. Smart cities are assumed as the reference scenario

    Analysis for Scalable Coding of Quality-Adjustable Sensor Data

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 신현식.Machine-generated data such as sensor data now comprise major portion of available information. This thesis addresses two important problems: storing of massive sensor data collection and efficient sensing. We first propose a quality-adjustable sensor data archiving, which compresses entire collection of sensor data efficiently without compromising key features. Considering the data aging aspect of sensor data, we make our archiving scheme capable of controlling data fidelity to exploit less frequent data access of user. This flexibility on quality adjustability leads to more efficient usage of storage space. In order to store data from various sensor types in cost-effective way, we study the optimal storage configuration strategy using analytical models that capture characteristics of our scheme. This strategy helps storing sensor data blocks with the optimal configurations that maximizes data fidelity of various sensor data under given storage space. Next, we consider efficient sensing schemes and propose a quality-adjustable sensing scheme. We adopt compressive sensing (CS) that is well suited for resource-limited sensors because of its low computational complexity. We enhance quality adjustability intrinsic to CS with quantization and especially temporal downsampling. Our sensing architecture provides more rate-distortion operating points than previous schemes, which enables sensors to adapt data quality in more efficient way considering overall performance. Moreover, the proposed temporal downsampling improves coding efficiency that is a drawback of CS. At the same time, the downsampling further reduces computational complexity of sensing devices, along with sparse random matrix. As a result, our quality-adjustable sensing can deliver gains to a wide variety of resource-constrained sensing techniques.Abstract i Contents iii List of Figures vi List of Tables x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Spatio-Temporal Correlation in Sensor Data 3 1.3 Quality Adjustability of Sensor Data 7 1.4 Research Contributions 9 1.5 Thesis Organization 11 Chapter 2 Archiving of Sensor Data 12 2.1 Encoding Sensor Data Collection 12 2.1.1 Archiving Architecture 13 2.1.2 Data Conversion 16 2.2 Compression Ratio Comparison 20 2.3 Quality-Adjustable Archiving Model 25 2.3.1 Data Fidelity Model: Rate 25 2.3.2 Data Fidelity Model: Distortion 28 2.4 QP-Rate-Distortion Model 36 2.5 Optimal Rate Allocation 40 2.5.1 Rate Allocation Strategy 40 2.5.2 Optimal Storage Configuration 41 2.5.3 Experimental Results 44 Chapter 3 Scalable Management of Storage 46 3.1 Scalable Quality Management 46 3.1.1 Archiving Architecture 47 3.1.2 Compression Ratio Comparison 49 3.2 Enhancing Quality Adjustability 51 3.2.1 Data Fidelity Model: Rate 52 3.2.2 Data Fidelity Model: Distortion 55 3.3 Optimal Rate Allocation 59 3.3.1 Rate Allocation Strategy 60 3.3.2 Optimal Storage Configuration 63 3.3.3 Experimental Results 71 Chapter 4 Quality-Adjustable Sensing 73 4.1 Compressive Sensing 73 4.1.1 Compressive Sensing Problem 74 4.1.2 General Signal Recovery 76 4.1.3 Noisy Signal Recovery 76 4.2 Quality Adjustability in Sensing Environment 77 4.2.1 Quantization and Temporal Downsampling 79 4.2.2 Optimization with Error Model 85 4.3 Low-Complexity Sensing 88 4.3.1 Sparse Random Matrix 89 4.3.2 Resource Savings 92 Chapter 5 Conclusions 96 5.1 Summary 96 5.2 Future Research Directions 98 Bibliography 100 Abstract in Korean 109Docto
    corecore