8,836 research outputs found

    APEnet+: a 3D toroidal network enabling Petaflops scale Lattice QCD simulations on commodity clusters

    Full text link
    Many scientific computations need multi-node parallelism for matching up both space (memory) and time (speed) ever-increasing requirements. The use of GPUs as accelerators introduces yet another level of complexity for the programmer and may potentially result in large overheads due to the complex memory hierarchy. Additionally, top-notch problems may easily employ more than a Petaflops of sustained computing power, requiring thousands of GPUs orchestrated with some parallel programming model. Here we describe APEnet+, the new generation of our interconnect, which scales up to tens of thousands of nodes with linear cost, thus improving the price/performance ratio on large clusters. The project target is the development of the Apelink+ host adapter featuring a low latency, high bandwidth direct network, state-of-the-art wire speeds on the links and a PCIe X8 gen2 host interface. It features hardware support for the RDMA programming model and experimental acceleration of GPU networking. A Linux kernel driver, a set of low-level RDMA APIs and an OpenMPI library driver are available, allowing for painless porting of standard applications. Finally, we give an insight of future work and intended developments

    Can open-source projects (re-) shape the SDN/NFV-driven telecommunication market?

    Get PDF
    Telecom network operators face rapidly changing business needs. Due to their dependence on long product cycles they lack the ability to quickly respond to changing user demands. To spur innovation and stay competitive, network operators are investigating technological solutions with a proven track record in other application domains such as open source software projects. Open source software enables parties to learn, use, or contribute to technology from which they were previously excluded. OSS has reshaped many application areas including the landscape of operating systems and consumer software. The paradigmshift in telecommunication systems towards Software-Defined Networking introduces possibilities to benefit from open source projects. Implementing the control part of networks in software enables speedier adaption and innovation, and less dependencies on legacy protocols or algorithms hard-coded in the control part of network devices. The recently proposed concept of Network Function Virtualization pushes the softwarization of telecommunication functionalities even further down to the data plane. Within the NFV paradigm, functionality which was previously reserved for dedicated hardware implementations can now be implemented in software and deployed on generic Commercial Off-The Shelf (COTS) hardware. This paper provides an overview of existing open source initiatives for SDN/NFV-based network architectures, involving infrastructure to orchestration-related functionality. It situates them in a business process context and identifies the pros and cons for the market in general, as well as for individual actors

    The Raincore API for clusters of networking elements

    Get PDF
    Clustering technology offers a way to increase overall reliability and performance of Internet information flow by strengthening one link in the chain without adding others. We have implemented this technology in a distributed computing architecture for network elements. The architecture, called Raincore, originated in the Reliable Array of Independent Nodes, or RAIN, research collaboration between the California Institute of Technology and the US National Aeronautics and Space Agency's Jet Propulsion Laboratory. The RAIN project focused on developing high-performance, fault-tolerant, portable clustering technology for spaceborne computing . The technology that emerged from this project became the basis for a spinoff company, Rainfinity, which has the exclusive intellectual property rights to the RAIN technology. The authors describe the Raincore conceptual architecture and distributed services, which are designed to make it easy for developers to port their applications to run on top of a cluster of networking elements. We include two applications: a Web server prototype that was part of the original RAIN research project and a commercial firewall cluster product from Rainfinity

    ClouNS - A Cloud-native Application Reference Model for Enterprise Architects

    Full text link
    The capability to operate cloud-native applications can generate enormous business growth and value. But enterprise architects should be aware that cloud-native applications are vulnerable to vendor lock-in. We investigated cloud-native application design principles, public cloud service providers, and industrial cloud standards. All results indicate that most cloud service categories seem to foster vendor lock-in situations which might be especially problematic for enterprise architectures. This might sound disillusioning at first. However, we present a reference model for cloud-native applications that relies only on a small subset of well standardized IaaS services. The reference model can be used for codifying cloud technologies. It can guide technology identification, classification, adoption, research and development processes for cloud-native application and for vendor lock-in aware enterprise architecture engineering methodologies

    APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    Full text link
    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera FPGA, are provided.Comment: 6 pages, 7 figures, proceeding of CHEP 2010, Taiwan, October 18-2
    corecore