275,425 research outputs found

    Designing Embodied Interactive Software Agents for E-Learning: Principles, Components, and Roles

    Get PDF
    Embodied interactive software agents are complex autonomous, adaptive, and social software systems with a digital embodiment that enables them to act on and react to other entities (users, objects, and other agents) in their environment through bodily actions, which include the use of verbal and non-verbal communicative behaviors in face-to-face interactions with the user. These agents have been developed for various roles in different application domains, in which they perform tasks that have been assigned to them by their developers or delegated to them by their users or by other agents. In computer-assisted learning, embodied interactive pedagogical software agents have the general task to promote human learning by working with students (and other agents) in computer-based learning environments, among them e-learning platforms based on Internet technologies, such as the Virtual Linguistics Campus (www.linguistics-online.com). In these environments, pedagogical agents provide contextualized, qualified, personalized, and timely assistance, cooperation, instruction, motivation, and services for both individual learners and groups of learners. This thesis develops a comprehensive, multidisciplinary, and user-oriented view of the design of embodied interactive pedagogical software agents, which integrates theoretical and practical insights from various academic and other fields. The research intends to contribute to the scientific understanding of issues, methods, theories, and technologies that are involved in the design, implementation, and evaluation of embodied interactive software agents for different roles in e-learning and other areas. For developers, the thesis provides sixteen basic principles (Added Value, Perceptible Qualities, Balanced Design, Coherence, Consistency, Completeness, Comprehensibility, Individuality, Variability, Communicative Ability, Modularity, Teamwork, Participatory Design, Role Awareness, Cultural Awareness, and Relationship Building) plus a large number of specific guidelines for the design of embodied interactive software agents and their components. Furthermore, it offers critical reviews of theories, concepts, approaches, and technologies from different areas and disciplines that are relevant to agent design. Finally, it discusses three pedagogical agent roles (virtual native speaker, coach, and peer) in the scenario of the linguistic fieldwork classes on the Virtual Linguistics Campus and presents detailed considerations for the design of an agent for one of these roles (the virtual native speaker)

    Dynamic Firewall Configuration Using Mobile Agents

    Get PDF
    The nearly omnipresence ofthe Internet and the steady increase ofwireless computing and mobile devices require highly dynamic adaptable distributed system architectures. Building such architectures needs a combination ofkey concepts from component technology and distributed systems. Mobile agents provide this combination. We use mobile agents as the building blocks ofacomponent-based system for remote supervision and control of both hard- and software in a distributed environment. In this paper we concentrate on the configuration ofindividual components and component relationships in our system. We identify requirements for remote configuration ofagent-based component systems and discuss architectural and user interface related issues ofour approaches. We use acode-on-demand approach for supporting elaborate user interfaces. We use a generative approach based on enhanced meta-information for reducing development effort. The presented approaches are applicable for remote configuration of component-based systems in general and consider additional requirements imposed through the use of mobile agenttechnology

    Towards epistemic autonomy in adaptive biomimetic middleware for cooperative sensornets

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.The importance of studying biomimetic models of software infrastructure for sensornet systems lies in the fact that they are not entirely formal models and thus have to cover a range of issues of epistemic autonomy as well as linguistic and mental adaptation. This adaptation considers the context of software ability to reflect upon the verifiability and validity of its actions and measurements. This research elucidates and explores epistemological consequences of embodying biological autonomic patterns in software architectural models. Autonomy in software systems is a complex issue that raises many fundamental inquiries. The proposal is to initially concentrate on transformations of biological paradigms into epistemological queries and then adapt suitable biomimetic mechanisms into the development of software structure and ethology. Such methodology has proven to be very successful in the design of many engineering systems. The approach leads to a better understanding of the ontology of biomimetic patterns in software as well as a confirmation of requirements validity and design verifiability of autonomous software systems. In a dynamic, cooperative but often hostile environment, a software system infrastructure requires autonomic abilities to execute its normal operations, detect faults and perform necessary recovery actions without the need for external intervention. We approach this problem from the point of view of cognitive and mimetic systems research. The simplest way to make an autonomous and adaptive sensornet system is to include a hierarchy of layers in its middleware, not only to monitor activities of its components but to learn and adapt new behavioural patterns of these components in a changing environment. There are situations, however, where the components will not be able to adapt, learn new behaviour and evolve by themselves. For instance, these may not have yet encountered the new situation while others already have. A solution to this problem is to distribute the new behaviour to neighbouring elements via direct and indirect stigmergy mechanisms so that collaborating components can mutually improve their individual and team performance. The main objective is to disallow distribution of multiple versions of the software components and rather allow each software component to acquire and share with others, new “skills”. The components have to compare/verify these new behavioural patterns against their own set of beliefs, desires and intentions. In this thesis we intend to present simulations to test the learning capability of biomimetic algorithms, build a proof-of-concept middleware solution and demonstrate that such systems can not only adapt and evolve but they are robust and highly interoperable (co-operative). The thesis also assesses the suitability of various biomimetic design patterns and algorithms for building autonomic software infrastructure systems for cooperative networked agents

    Automating distributed workflow for electronic commerce: A model for building meta-workflow components

    Get PDF
    Business software development environments for web- based applications are at a very early stage in their potential lifecycle. The purpose of this research agenda is to develop a model for how business processes can be interpreted into primitive computer codes for web applications. We have taken a transaction perspective adapted from the distributed database approach to maintenance of integrity assuming the concepts of ACIDity (Atomicity, Consistency, Isolation, and Durability) and serializability. This perspective is consistent with emerging literature on “workflow agents” [e.g., Huhns and Singh, 1998]. In this paper, we design, develop, and show an example of a meta-level set of building blocks for a direct mapping between electronic commerce and workflow processes. To validate the sufficiency and completeness of the meta-level components proposed, a complete mapping of an electronic commerce application to meta-workflow components is proposed

    Flexible Service Choreography

    Get PDF
    Service-oriented architectures are a popular architectural paradigm for building software applications from a number of loosely coupled, distributed services. Through a set of procedural rules, workflow technologies define how groups of services coordinate with one another to achieve a shared task. A problem with workflow specifications is that often the patterns of interaction between the distributed services are too complicated to predict and analyse at design-time. In certain cases, the exact patterns of message exchange and the concrete services to call cannot be predicted in advance, due to factors such as fluctuating network load or the availability of services. It is a more realistic assumption to endow software components with the ability to make decisions about the nature and scope of their interactions at runtime. Multiagent systems offer a complementary paradigm: building software applications from a number of self interested, autonomous agents. This thesis presents an investigation into fusing the agency and service-oriented architecture paradigms, in order to facilitate flexible, workflow composition. Our approach offers an agent-based solution to service choreography and is founded on the concept of shared interaction protocols. By adopting an agent-based approach to service choreography, active autonomous agents can utilise the typically passive service-oriented architectures, found in Internet and Grid systems. In contrast with statically defined, centralised service orchestrations, decentralised agents can perform service choreography at runtime, allowing them to operate in scenarios where it is not possible to define the pattern of interaction in advance. Application to real scenarios is a driving factor behind this research. By working closely with a number of active Grid projects, namely AstroGrid and the Large-Synoptic Survey Telescope (LSST), a concrete set of requirements for scientific workflow have been derived, based on realistic science problems. This research has resulted in the MultiAgent Service Choreography (MASC) language to express scientific workflow, methodology for system building and a software framework which performs agent based Web service choreography, in order to enact distributed e-Science experiments. Evaluation of this thesis is conducted through case study, applying the language, methodology and software framework to solve a motivating set of workflow scenarios

    Designing and Implementing Embodied Agents: Learning from Experience

    Get PDF
    In this paper, we provide an overview of part of our experience in designing and implementing some of the embodied agents and talking faces that we have used for our research into human computer interaction. We focus on the techniques that were used and evaluate this with respect to the purpose that the agents and faces were to serve and the costs involved in producing and maintaining the software. We discuss the function of this research and development in relation to the educational programme of our graduate students

    Pitfalls of Agent-Oriented Development

    No full text
    While the theoretical and experimental foundations of agent-based systems are becoming increasingly well understood, comparatively little effort has been devoted to understanding the pragmatics of (multi-) agent systems development - the everyday reality of carrying out an agent-based development project. As a result, agent system developers are needlessly repeating the same mistakes, with the result that, at best, resources are wasted - at worst, projects fail. This paper identifies the main pitfalls that await the agent system developer, and where possible, makes tentative recommendations for how these pitfalls can be avoided or rectified
    • …
    corecore