1,859 research outputs found

    Diverse Auto-Curriculum is Critical for Successful Real-World Multiagent Learning Systems

    Get PDF
    Multiagent reinforcement learning (MARL) has achieved a remarkable amount of success in solving various types of video games. A cornerstone of this success is the auto-curriculum framework, which shapes the learning process by continually creating new challenging tasks for agents to adapt to, thereby facilitating the acquisition of new skills. In order to extend MARL methods to real-world domains outside of video games, we envision in this blue sky paper that maintaining a diversity-aware auto-curriculum is critical for successful MARL applications. Specifically, we argue that \emph{behavioural diversity} is a pivotal, yet under-explored, component for real-world multiagent learning systems, and that significant work remains in understanding how to design a diversity-aware auto-curriculum. We list four open challenges for auto-curriculum techniques, which we believe deserve more attention from this community. Towards validating our vision, we recommend modelling realistic interactive behaviours in autonomous driving as an important test bed, and recommend the SMARTS/ULTRA benchmark.Comment: AAMAS 202

    Towards Deep Learning with Competing Generalisation Objectives

    Get PDF
    The unreasonable effectiveness of Deep Learning continues to deliver unprecedented Artificial Intelligence capabilities to billions of people. Growing datasets and technological advances keep extending the reach of expressive model architectures trained through efficient optimisations. Thus, deep learning approaches continue to provide increasingly proficient subroutines for, among others, computer vision and natural interaction through speech and text. Due to their scalable learning and inference priors, higher performance is often gained cost-effectively through largely automatic training. As a result, new and improved capabilities empower more people while the costs of access drop. The arising opportunities and challenges have profoundly influenced research. Quality attributes of scalable software became central desiderata of deep learning paradigms, including reusability, efficiency, robustness and safety. Ongoing research into continual, meta- and robust learning aims to maximise such scalability metrics in addition to multiple generalisation criteria, despite possible conflicts. A significant challenge is to satisfy competing criteria automatically and cost-effectively. In this thesis, we introduce a unifying perspective on learning with competing generalisation objectives and make three additional contributions. When autonomous learning through multi-criteria optimisation is impractical, it is reasonable to ask whether knowledge of appropriate trade-offs could make it simultaneously effective and efficient. Informed by explicit trade-offs of interest to particular applications, we developed and evaluated bespoke model architecture priors. We introduced a novel architecture for sim-to-real transfer of robotic control policies by learning progressively to generalise anew. Competing desiderata of continual learning were balanced through disjoint capacity and hierarchical reuse of previously learnt representations. A new state-of-the-art meta-learning approach is then proposed. We showed that meta-trained hypernetworks efficiently store and flexibly reuse knowledge for new generalisation criteria through few-shot gradient-based optimisation. Finally, we characterised empirical trade-offs between the many desiderata of adversarial robustness and demonstrated a novel defensive capability of implicit neural networks to hinder many attacks simultaneously

    General intelligence requires rethinking exploration

    Get PDF
    We are at the cusp of a transition from 'learning from data' to 'learning what data to learn from' as a central focus of artificial intelligence (AI) research. While the first-order learning problem is not completely solved, large models under unified architectures, such as transformers, have shifted the learning bottleneck from how to effectively train models to how to effectively acquire and use task-relevant data. This problem, which we frame as exploration, is a universal aspect of learning in open-ended domains like the real world. Although the study of exploration in AI is largely limited to the field of reinforcement learning, we argue that exploration is essential to all learning systems, including supervised learning. We propose the problem of generalized exploration to conceptually unify exploration-driven learning between supervised learning and reinforcement learning, allowing us to highlight key similarities across learning settings and open research challenges. Importantly, generalized exploration is a necessary objective for maintaining open-ended learning processes, which in continually learning to discover and solve new problems, provides a promising path to more general intelligence

    Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey

    Get PDF
    Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research
    corecore