7 research outputs found

    Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors

    No full text
    With rapid adoption of deep learning in critical applications, the question of when and how much to trust these models often arises, which drives the need to quantify the inherent uncertainties. While identifying all sources that account for the stochasticity of models is challenging, it is common to augment predictions with confidence intervals to convey the expected variations in a model's behavior. We require prediction intervals to be well-calibrated, reflect the true uncertainties, and to be sharp. However, existing techniques for obtaining prediction intervals are known to produce unsatisfactory results in at least one of these criteria. To address this challenge, we develop a novel approach for building calibrated estimators. More specifically, we use separate models for prediction and interval estimation, and pose a bi-level optimization problem that allows the former to leverage estimates from the latter through an uncertainty matching strategy. Using experiments in regression, time-series forecasting, and object localization, we show that our approach achieves significant improvements over existing uncertainty quantification methods, both in terms of model fidelity and calibration error

    Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors

    No full text

    A review of probabilistic forecasting and prediction with machine learning

    Full text link
    Predictions and forecasts of machine learning models should take the form of probability distributions, aiming to increase the quantity of information communicated to end users. Although applications of probabilistic prediction and forecasting with machine learning models in academia and industry are becoming more frequent, related concepts and methods have not been formalized and structured under a holistic view of the entire field. Here, we review the topic of predictive uncertainty estimation with machine learning algorithms, as well as the related metrics (consistent scoring functions and proper scoring rules) for assessing probabilistic predictions. The review covers a time period spanning from the introduction of early statistical (linear regression and time series models, based on Bayesian statistics or quantile regression) to recent machine learning algorithms (including generalized additive models for location, scale and shape, random forests, boosting and deep learning algorithms) that are more flexible by nature. The review of the progress in the field, expedites our understanding on how to develop new algorithms tailored to users' needs, since the latest advancements are based on some fundamental concepts applied to more complex algorithms. We conclude by classifying the material and discussing challenges that are becoming a hot topic of research.Comment: 83 pages, 5 figure
    corecore