143,161 research outputs found

    Contours of Inclusion: Inclusive Arts Teaching and Learning

    Get PDF
    The purpose of this publication is to share models and case examples of the process of inclusive arts curriculum design and evaluation. The first section explains the conceptual and curriculum frameworks that were used in the analysis and generation of the featured case studies (i.e. Understanding by Design, Differentiated Instruction, and Universal Design for Learning). Data for the cases studies was collected from three urban sites (i.e. Los Angeles, San Francisco, and Boston) and included participant observations, student and teacher interviews, curriculum documentation, digital documentation of student learning, and transcripts from discussion forum and teleconference discussions from a professional learning community.The initial case studies by Glass and Barnum use the curricular frameworks to analyze and understand what inclusive practices look like in two case studies of arts-in-education programs that included students with disabilities. The second set of precedent case studies by Kronenberg and Blair, and Jenkins and Agois Hurel uses the frameworks to explain their process of including students by providing flexible arts learning options to support student learning of content standards. Both sets of case studies illuminate curricular design decisions and instructional strategies that supported the active engagement and learning of students with disabilities in educational settings shared with their peers. The second set of cases also illustrate the reflective process of using frameworks like Universal Design for Learning (UDL) to guide curricular design, responsive instructional differentiation, and the use of the arts as a rich, meaningful, and engaging option to support learning. Appended are curriculum design and evaluation tools. (Individual chapters contain references.

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Framing Social Values:\ud An Experimental Study of Culture and Cognition

    Get PDF
    How and why does a given social value come to shape the way an individual thinks, feels,and acts in a specific social situation? This study links ideas from Goffman’s frame analysis to other lines of research, proposing that dramatic narratives of variable content, vividness,and language-in-use produce variation in the accessibility of schematic, internal cultural frameworks, and, thereby, variation in the social value frames that gain situational primacy. Hypotheses derived from the argument are experimentally supported, and results encourage further research on the process of social value framing, which operates as a person crosses oundaries in the complex subcultural mosaic

    Design of Covalent Organic Frameworks for Methane Storage

    Get PDF
    We designed 14 new covalent organic frameworks (COFs), which are expected to adsorb large amounts of methane (CH_4) at 298 K and up to 300 bar. We have calculated their delivery uptake using grand canonical Monte Carlo (GCMC) simulations. We also report their thermodynamic stability based on 7.5 ns molecular dynamics simulations. Two new frameworks, COF-103-Eth-trans and COF-102-Ant, are found to exceed the DOE target of 180 v(STP)/v at 35 bar for methane storage. Their performance is comparable to the best previously reported materials: PCN-14 and Ni-MOF-74. Our results indicate that using thin vinyl bridging groups aid performance by minimizing the interaction methane-COF at low pressure. This is a new feature that can be used to enhance loading in addition to the common practice of adding extra fused benzene rings. Most importantly, this report shows that pure nonbonding interactions, van der Waals (vdW) and electrostatic forces in light elements (C, O, B, H, and Si), can rival the enhancement in uptake obtained for microporous materials derived from early transition metals

    Building a Disciplinary, World-Wide Data Infrastructure

    Full text link
    Sharing scientific data, with the objective of making it fully discoverable, accessible, assessable, intelligible, usable, and interoperable, requires work at the disciplinary level to define in particular how the data should be formatted and described. Each discipline has its own organization and history as a starting point, and this paper explores the way a range of disciplines, namely materials science, crystallography, astronomy, earth sciences, humanities and linguistics get organized at the international level to tackle this question. In each case, the disciplinary culture with respect to data sharing, science drivers, organization and lessons learnt are briefly described, as well as the elements of the specific data infrastructure which are or could be shared with others. Commonalities and differences are assessed. Common key elements for success are identified: data sharing should be science driven; defining the disciplinary part of the interdisciplinary standards is mandatory but challenging; sharing of applications should accompany data sharing. Incentives such as journal and funding agency requirements are also similar. For all, it also appears that social aspects are more challenging than technological ones. Governance is more diverse, and linked to the discipline organization. CODATA, the RDA and the WDS can facilitate the establishment of disciplinary interoperability frameworks. Being problem-driven is also a key factor of success for building bridges to enable interdisciplinary research.Comment: Proceedings of the session "Building a disciplinary, world-wide data infrastructure" of SciDataCon 2016, held in Denver, CO, USA, 12-14 September 2016, to be published in ICSU CODATA Data Science Journal in 201
    • …
    corecore