18,094 research outputs found

    Opinion dynamics with varying susceptibility to persuasion

    Full text link
    A long line of work in social psychology has studied variations in people's susceptibility to persuasion -- the extent to which they are willing to modify their opinions on a topic. This body of literature suggests an interesting perspective on theoretical models of opinion formation by interacting parties in a network: in addition to considering interventions that directly modify people's intrinsic opinions, it is also natural to consider interventions that modify people's susceptibility to persuasion. In this work, we adopt a popular model for social opinion dynamics, and we formalize the opinion maximization and minimization problems where interventions happen at the level of susceptibility. We show that modeling interventions at the level of susceptibility lead to an interesting family of new questions in network opinion dynamics. We find that the questions are quite different depending on whether there is an overall budget constraining the number of agents we can target or not. We give a polynomial-time algorithm for finding the optimal target-set to optimize the sum of opinions when there are no budget constraints on the size of the target-set. We show that this problem is NP-hard when there is a budget, and that the objective function is neither submodular nor supermodular. Finally, we propose a heuristic for the budgeted opinion optimization and show its efficacy at finding target-sets that optimize the sum of opinions compared on real world networks, including a Twitter network with real opinion estimates

    Reciprocity-driven Sparse Network Formation

    Full text link
    A resource exchange network is considered, where exchanges among nodes are based on reciprocity. Peers receive from the network an amount of resources commensurate with their contribution. We assume the network is fully connected, and impose sparsity constraints on peer interactions. Finding the sparsest exchanges that achieve a desired level of reciprocity is in general NP-hard. To capture near-optimal allocations, we introduce variants of the Eisenberg-Gale convex program with sparsity penalties. We derive decentralized algorithms, whereby peers approximately compute the sparsest allocations, by reweighted l1 minimization. The algorithms implement new proportional-response dynamics, with nonlinear pricing. The trade-off between sparsity and reciprocity and the properties of graphs induced by sparse exchanges are examined.Comment: 19 page

    Optimum Statistical Estimation with Strategic Data Sources

    Full text link
    We propose an optimum mechanism for providing monetary incentives to the data sources of a statistical estimator such as linear regression, so that high quality data is provided at low cost, in the sense that the sum of payments and estimation error is minimized. The mechanism applies to a broad range of estimators, including linear and polynomial regression, kernel regression, and, under some additional assumptions, ridge regression. It also generalizes to several objectives, including minimizing estimation error subject to budget constraints. Besides our concrete results for regression problems, we contribute a mechanism design framework through which to design and analyze statistical estimators whose examples are supplied by workers with cost for labeling said examples

    What Makes a Good Plan? An Efficient Planning Approach to Control Diffusion Processes in Networks

    Full text link
    In this paper, we analyze the quality of a large class of simple dynamic resource allocation (DRA) strategies which we name priority planning. Their aim is to control an undesired diffusion process by distributing resources to the contagious nodes of the network according to a predefined priority-order. In our analysis, we reduce the DRA problem to the linear arrangement of the nodes of the network. Under this perspective, we shed light on the role of a fundamental characteristic of this arrangement, the maximum cutwidth, for assessing the quality of any priority planning strategy. Our theoretical analysis validates the role of the maximum cutwidth by deriving bounds for the extinction time of the diffusion process. Finally, using the results of our analysis, we propose a novel and efficient DRA strategy, called Maximum Cutwidth Minimization, that outperforms other competing strategies in our simulations.Comment: 18 pages, 3 figure

    Observer Placement for Source Localization: The Effect of Budgets and Transmission Variance

    Get PDF
    When an epidemic spreads in a network, a key question is where was its source, i.e., the node that started the epidemic. If we know the time at which various nodes were infected, we can attempt to use this information in order to identify the source. However, maintaining observer nodes that can provide their infection time may be costly, and we may have a budget kk on the number of observer nodes we can maintain. Moreover, some nodes are more informative than others due to their location in the network. Hence, a pertinent question arises: Which nodes should we select as observers in order to maximize the probability that we can accurately identify the source? Inspired by the simple setting in which the node-to-node delays in the transmission of the epidemic are deterministic, we develop a principled approach for addressing the problem even when transmission delays are random. We show that the optimal observer-placement differs depending on the variance of the transmission delays and propose approaches in both low- and high-variance settings. We validate our methods by comparing them against state-of-the-art observer-placements and show that, in both settings, our approach identifies the source with higher accuracy.Comment: Accepted for presentation at the 54th Annual Allerton Conference on Communication, Control, and Computin
    • …
    corecore