5 research outputs found

    Broadcasting in DMA-bound bounded degree graphs

    Get PDF
    AbstractBroadcasting is an information dissemination process in which a message is to be sent from a single originator to all members of a network by placing calls over the communication lines of the network. In [2], Bermond, Hell, Liestman and Peters studied the effect, on broadcasting capabilities, of placing an upper bound on the graph's degree. In this paper, we generalize their results allowing calls to involve more than two participants. We give lower bounds and construct bounded degree graphs which allow rapid broadcasting. Our constructions use the nation of compounding graphs in de Bruijin digraphs. We also obtain asymptotic upper and lower bounds for broadcast time, as the maximum degree increases

    Master index: volumes 31–40

    Get PDF

    Optimal broadcasting in treelike graphs

    Get PDF
    Broadcasting is an information dissemination problem in a connected network, in which one node, called the originator , disseminates a message to all other nodes by placing a series of calls along the communication lines of the network. Once informed, the nodes aid the originator in distributing the message. Finding the broadcast time of a vertex in an arbitrary graph is NP-complete. The problem is solved polynomially only for a few classes of graphs. In this thesis we study the broadcast problem in different classes of graphs which have various similarities to trees. The unicyclic graph is the simplest graph family after trees, it is a connected graph with only one cycle in it. We provide a linear time solution for the broadcast problem in unicyclic graphs. We also studied graphs with increasing number of cycles and complexity and provide again polynomial time solutions. These graph families are: tree of cycles, necklace graphs, and 2-restricted cactus graphs. We also define the fully connected tree graphs and provide a polynomial solution and use these results to obtain polynomial solution for the broadcast problem in tree of cliques and a constant approximation algorithm for the hierarchical tree cluster networks
    corecore