118,470 research outputs found

    The Cost of Global Broadcast in Dynamic Radio Networks

    Get PDF
    We study the single-message broadcast problem in dynamic radio networks. We show that the time complexity of the problem depends on the amount of stability and connectivity of the dynamic network topology and on the adaptiveness of the adversary providing the dynamic topology. More formally, we model communication using the standard graph-based radio network model. To model the dynamic network, we use a generalization of the synchronous dynamic graph model introduced in [Kuhn et al., STOC 2010]. For integer parameters T1T\geq 1 and k1k\geq 1, we call a dynamic graph TT-interval kk-connected if for every interval of TT consecutive rounds, there exists a kk-vertex-connected stable subgraph. Further, for an integer parameter τ0\tau\geq 0, we say that the adversary providing the dynamic network is τ\tau-oblivious if for constructing the graph of some round tt, the adversary has access to all the randomness (and states) of the algorithm up to round tτt-\tau. As our main result, we show that for any T1T\geq 1, any k1k\geq 1, and any τ1\tau\geq 1, for a τ\tau-oblivious adversary, there is a distributed algorithm to broadcast a single message in time O((1+nkmin{τ,T})nlog3n)O\big(\big(1+\frac{n}{k\cdot\min\left\{\tau,T\right\}}\big)\cdot n\log^3 n\big). We further show that even for large interval kk-connectivity, efficient broadcast is not possible for the usual adaptive adversaries. For a 11-oblivious adversary, we show that even for any T(n/k)1εT\leq (n/k)^{1-\varepsilon} (for any constant ε>0\varepsilon>0) and for any k1k\geq 1, global broadcast in TT-interval kk-connected networks requires at least Ω(n2/(k2logn))\Omega(n^2/(k^2\log n)) time. Further, for a 00 oblivious adversary, broadcast cannot be solved in TT-interval kk-connected networks as long as T<nkT<n-k.Comment: 17 pages, conference version appeared in OPODIS 201

    Collision Avoidance In Cognitive Radio Adhoc Networks Using Leach Algorithm

    Get PDF
    One of the most important operation in ad hoc networks is the broadcast whose protocol is very useful in the wireless system. In earlier days infrastructure based networks were used which denied secondary users from using the free channels. The existence of ad hoc networks makes the cognitive radio very useful. A stream of channels are available for the secondary users in cognitive radio along with the primary users. In this paper, we discuss the modified version of a fully-distributed Broadcast protocol in multi-hop Cognitive Radio ad hoc networks with collision avoidance, BRACER. We consider the availability of spectrum for the unlicensed users along with the primary user for the transmission to take place

    Broadcasting in Noisy Radio Networks

    Full text link
    The widely-studied radio network model [Chlamtac and Kutten, 1985] is a graph-based description that captures the inherent impact of collisions in wireless communication. In this model, the strong assumption is made that node vv receives a message from a neighbor if and only if exactly one of its neighbors broadcasts. We relax this assumption by introducing a new noisy radio network model in which random faults occur at senders or receivers. Specifically, for a constant noise parameter p[0,1)p \in [0,1), either every sender has probability pp of transmitting noise or every receiver of a single transmission in its neighborhood has probability pp of receiving noise. We first study single-message broadcast algorithms in noisy radio networks and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007 does not. We give a modified version of the algorithm of Gasieniec et al., 2007 that is robust to sender and receiver faults, and extend both this modified algorithm and the Decay algorithm to robust multi-message broadcast algorithms. We next investigate the extent to which (network) coding improves throughput in noisy radio networks. We address the previously perplexing result of Alon et al. 2014 that worst case coding throughput is no better than worst case routing throughput up to constants: we show that the worst case throughput performance of coding is, in fact, superior to that of routing -- by a Θ(log(n))\Theta(\log(n)) gap -- provided receiver faults are introduced. However, we show that any coding or routing scheme for the noiseless setting can be transformed to be robust to sender faults with only a constant throughput overhead. These transformations imply that the results of Alon et al., 2014 carry over to noisy radio networks with sender faults.Comment: Principles of Distributed Computing 201

    Diversity gain for DVB-H by using transmitter/receiver cyclic delay diversity

    Get PDF
    The objective of this paper is to investigate different diversity techniques for broadcast networks that will minimize the complexity and improve received SNR of broadcast systems. Resultant digital broadcast networks would require fewer transmitter sites and thus be more cost-effective and have less environmental impact. The techniques can be applied to DVB-T, DVB-H and DAB systems that use Orthogonal Frequency Division Multplexing (OFDM). These are key radio broadcast network technologies, which are expected to complement emerging technologies such as WiMAX and future 4G networks for delivery of broadband content. Transmitter and receiver diversity technologies can increase the frequency and time selectivity of the resulting channel transfer function at the receiver. Diversity exploits the statistical nature of fading due to multipath and reduces the likelihood of deep fading by providing a diversity of transmission signals. Multiple signals are transmitted in such a way as to ensure that several signals reach the receiver each with uncorrelated fading. Transmit diversity is more practical than receive diversity due to the difficulty of locating two receive antennas far enough apart in a small mobile device. The schemes examined here comply with existing DVB standards and can be incorporated into existing systems without change. The diversity techniques introduced in this paper are applied to the DVB-H system. Bit error performance investigations were conducted by simulation for different DVB-H and diversity parameters

    A Voice for the Voiceless: Peer-to-peer Mobile Phone Networks for a Community Radio Service

    Get PDF
    We propose a new application for mobile ad-hoc networks (MANETs) – community radio. We argue how MANETS help overcome important limitations in how community radio is currently operationalized. We identify critical design elements for a MANET based community radio service and propose a broad architecture for the same. We then investigate a most critical issue– the choice of the network wide broadcast protocol for the audio content. We identify desired characteristics of a community radio broadcasting service. We choose and evaluate eight popular broadcasting protocols on these characteristics, to find the protocols most suited for our application.

    The abstract MAC layer

    Get PDF
    A diversity of possible communication assumptions complicates the study of algorithms and lower bounds for radio networks. We address this problem by defining an Abstract MAC Layer. This service provides reliable local broadcast communication, with timing guarantees stated in terms of a collection of abstract delay functions applied to the relevant contention. Algorithm designers can analyze their algorithms in terms of these functions, independently of specific channel behavior. Concrete implementations of the Abstract MAC Layer over basic radio network models generate concrete definitions for these delay functions, automatically adapting bounds proven for the abstract service to bounds for the specific radio network under consideration. To illustrate this approach, we use the Abstract MAC Layer to study the new problem of Multi-Message Broadcast, a generalization of standard single-message broadcast, in which any number of messages arrive at any processes at any times. We present and analyze two algorithms for Multi-Message Broadcast in static networks: a simple greedy algorithm and one that uses regional leaders. We then indicate how these results can be extended to mobile networks.Cisco Systems, Inc.Lehman Brothers (1993-2008)CUNY (A New MAC-Layer Paradigm for Mobile Ad-Hoc Networks)National Science Foundation (U.S.) (NSF Award Number CCF-0726514)National Science Foundation (U.S.) (NSF Award Number CNS-0715397
    corecore