524 research outputs found

    Towards Opportunistic Data Dissemination in Mobile Phone Sensor Networks

    Get PDF
    Recently, there has been a growing interest within the research community in developing opportunistic routing protocols. Many schemes have been proposed; however, they differ greatly in assumptions and in type of network for which they are evaluated. As a result, researchers have an ambiguous understanding of how these schemes compare against each other in their specific applications. To investigate the performance of existing opportunistic routing algorithms in realistic scenarios, we propose a heterogeneous architecture including fixed infrastructure, mobile infrastructure, and mobile nodes. The proposed architecture focuses on how to utilize the available, low cost short-range radios of mobile phones for data gathering and dissemination. We also propose a new realistic mobility model and metrics. Existing opportunistic routing protocols are simulated and evaluated with the proposed heterogeneous architecture, mobility models, and transmission interfaces. Results show that some protocols suffer long time-to-live (TTL), while others suffer short TTL. We show that heterogeneous sensor network architectures need heterogeneous routing algorithms, such as a combination of Epidemic and Spray and Wait

    Routing in a many-to-one communication scenario in a realistic VDTN

    Get PDF
    In this paper, we evaluate and compare the performance of different routing protocols in a many-to-one communication within a Vehicular Delay Tolerant Network (VDTN). Seven groups with three stationary sensor nodes sense the temperature, humidity and wind speed and send these data to a stationary destination node that collect them for statistical and data analysis purposes. Vehicles moving in Tirana city roads in Albania during the opportunistic contacts will exchange the sensed data to destination node. The simulations are conducted with the Opportunistic Network Environment (ONE) simulator. For the simulations we considered two different scenarios where the distance of the source nodes from the destination is short and long. For both scenarios the effect of node density, ttl and node movement model is evaluated. The performance is analyzed using delivery probability, overhead ratio, average latency, average number of hops and average buffer time metrics. The simulation results show that the increase of node density increases the delivery probability for all protocols and both scenarios, and better results are achieved when shortest-path map-based movement model is used. The increase of ttl slightly affects the performance of all protocols. By increasing the distance between source nodes and destination node, delivery probability is decreased almost 10% for all protocols, the overhead for sprayandwait protocol does not change, but for other protocols is slightly increased and the average number of hops and average latency is increased.Peer ReviewedPostprint (author's final draft

    HYMAD: Hybrid DTN-MANET Routing for Dense and Highly Dynamic Wireless Networks

    Full text link
    In this paper we propose HYMAD, a Hybrid DTN-MANET routing protocol which uses DTN between disjoint groups of nodes while using MANET routing within these groups. HYMAD is fully decentralized and only makes use of topological information exchanges between the nodes. We evaluate the scheme in simulation by replaying real life traces which exhibit this highly dynamic connectivity. The results show that HYMAD outperforms the multi-copy Spray-and-Wait DTN routing protocol it extends, both in terms of delivery ratio and delay, for any number of message copies. Our conclusion is that such a Hybrid DTN-MANET approach offers a promising venue for the delivery of elastic data in mobile ad-hoc networks as it retains the resilience of a pure DTN protocol while significantly improving performance.Comment: 7 pages, 6 figure
    corecore