3,213 research outputs found

    Broadband Performance Metrics and Regression Approximations of the New Coupling Schemes for Distribution Broadband over Power Lines (BPL) Networks

    Get PDF
    This paper assesses the broadband performance of overhead (OV) and underground (UN) low-voltage (LV) and medium-voltage (MV) broadband over power lines (BPL) networks when the new refined Coupling Scheme module (CS2 module) is adopted. The broadband performance of distribution BPL networks is assessed in terms of their Average Channel Gain (ACG), Root-Mean-Square Delay-Spread (RMS-DS), Coherence Bandwidth (CB) and Spectral Efficiency (SE). Also, corresponding regression approximations (i.e., UN1, UN2 and UN3 approaches) are given in the examined BPL frequency range. The aforementioned broadband performance metrics of the application of CS2 module are compared against the relative ones of the vintage CS1 module and of MIMO channels. The analysis and relevant numerical results outline: (i) the important improvement of the aforementioned performance metrics and regression approximations when CS2 module is applied in distribution BPL networks instead of CS1 module; and (ii) the universal role of UN1, UN2 and UN3 approaches for describing coupling scheme channels and MIMO ones.Citation: Lazaropoulos, A. G. (2018). Broadband Performance Metrics and Regression Approximations of the New Coupling Schemes for Distribution Broadband over Power Lines (BPL) Networks. Trends in Renewable Energy, 4, 43-73

    Business Analytics and IT in Smart Grid – Part 2: The Qualitative Mitigation Impact of Piecewise Monotonic Data Approximations on the iSHM Class Map Footprints of Overhead Low-Voltage Broadband over Power Lines Topologies Contaminated by Measurement Differences

    Get PDF
    Business analytics and IT infrastructure preserve the integrity of the smart grid (SG) operation against the flood of big data that may be susceptible to faults, such as measurement differences. In [1], the impact of measurement differences that follow continuous uniform distributions (CUDs) of different magnitudes has been investigated via initial Statistical Hybrid Model (iSHM) footprints during the operation of overhead low-voltage broadband over power lines (OV LV BPL) networks. In this companion paper, the mitigation efficiency of piecewise monotonic data approximations, such as L1PMA and L2WPMA, is qualitatively assessed in terms of iSHM footprints when the aforementioned measurement difference CUD of different intensities are applied.Citation: Lazaropoulos, A. G. (2020). Business Analytics and IT in Smart Grid – Part 2: The Qualitative Mitigation Impact of Piecewise Monotonic Data Approximations on the iSHM Class Map Footprints of Overhead Low-Voltage Broadband over Power Lines Topologies Contaminated by Measurement Differences. Trends in Renewable Energy, 6, 177-203. DOI: 10.17737/tre.2020.6.2.0011

    Statistical Channel Modeling of Overhead Low Voltage Broadband over Power Lines (OV LV BPL) Networks – Part 1: The Theory of Class Map Footprints of Real OV LV BPL Topologies, Branch Line Faults and Hook-Style Energy Thefts

    Get PDF
    Due to the significant volatility of Broadband over Power Lines (BPL) networks regarding their circuital and topological characteristics, channel statistical modeling recently gains special attention from the BPL communications engineers. Among the recently presented channel attenuation statistical models, initial statistical hybrid model (iSHM) and modified statistical hybrid model (mSHM) have been theoretically defined and applied to overhead medium voltage (OV MV), underground medium voltage (UN MV) and overhead high voltage (OV HV) BPL networks so far. Apart from the iSHM and mSHM definition and application, the theory of the definition procedure of new virtual distribution and transmission BPL topologies, which describes the phases towards defining statistically equivalent BPL topologies and topology subclasses to the real indicative ones, has been demonstrated as well as the class maps, which are 2D capacity contour plots with respect to the channel attenuation statistical distributions (CASDs) parameters of iSHM and mSHM.In this pair of papers, iSHM, mSHM, the definition procedure of new virtual BPL topologies and the class mapping are first applied to overhead low voltage (OV LV) BPL networks. Based on the class maps and the BPL topology database of Topology Identification Methodology (TIM), the required theory for illustrating the footprint of the real OV LV BPL topologies is first presented on class maps in this paper. On the basis of the class maps and the BPL topology database of Fault and Instability Identification Methodology (FIIM), the required theory for illustrating the footprint of the OV LV BPL topologies with branch line faults is first identified on class maps in this paper. On the basis of the class maps and the BPL topology database of hook style energy theft detection method (HS-DET method), the required theory for illustrating the footprint of the OV LV BPL topologies with a hook style energy theft is first demonstrated on class maps in this paper.Citation: Lazaropoulos, A. G. (2020). Statistical Channel Modeling of Overhead Low Voltage Broadband over Power Lines (OV LV BPL) Networks – Part 1: The Theory of Class Map Footprints of Real OV LV BPL Topologies, Branch Line Faults and Hook-Style Energy Thefts. Trends in Renewable Energy, 6, 61-87. DOI: 10.17737/tre.2020.6.1.0011

    Smart Energy and Spectral Efficiency (SE) of Distribution Broadband over Power Lines (BPL) Networks – Part 2: L1PMA, L2WPMA and L2CXCV for SE against Measurement Differences in Overhead Medium-Voltage BPL Networks

    Get PDF
    This second paper assesses the performance of piecewise monotonic data approximations, such as L1PMA, L2WPMA and L2CXCV, against the measurement differences during the spectral efficiency (SE) calculations in overhead medium-voltage broadband over power lines (OV MV BPL) networks. In this case study paper, the performance of the aforementioned three already known piecewise monotonic data approximations, which are considered as countermeasure techniques against measurement differences, is here extended during the SE computations. The indicative BPL topologies of the first paper are again considered while the 3-30 MHz frequency band of the BPL operation is assumed.Citation: Lazaropoulos, A. G. (2018). Smart Energy and Spectral Efficiency (SE) of Distribution Broadband over Power Lines (BPL) Networks – Part 2: L1PMA, L2WPMA and L2CXCV for SE against Measurement Differences in Overhead Medium-Voltage BPL Networks. Trends in Renewable Energy, 4, 185-212. DOI: 10.17737/tre.2018.4.2.007

    Capacity Performance of Overhead Transmission Multiple-Input Multiple-Output Broadband over Power Lines Networks: The Insidious Effect of Noise and the Role of Noise Models

    Get PDF
    Extending the analysis already presented in [1], this paper considers broadband potential of overhead (OV) transmission multiple-input multiple-output (MIMO) broadband over power lines (BPL) networks when different noise conditions occur and different well-proven noise models are adopted.The contribution of this paper is two-fold. First, the broadband potential of a great number of indicative OV high-voltage (HV) BPL topologies and of MIMO transmission schemes is studied in terms of appropriate capacity metrics. The relevant numerical results reveal the significant dependence of ΜΙΜΟ capacity metrics on noise conditions. Second, various well-known BPL noise models from the literature are compared on the basis of their achieved OV HV MIMO BPL capacity. Through the careful study of the capacity results of noise models, it is demonstrated that spectrally flat additive white Gaussian noise (AWGN) may be comfortably assumed as an efficient noise model in transmission MIMO BPL networks. Also in MIMO BPL networks, the comparative capacity analysis of noise models shows small differences among them in the 3-88MHz frequency range.Citation:Lazaropoulos, A. G. (2016). Capacity Performance of Overhead Transmission Multiple-Input Multiple-Output Broadband over Power Lines Networks: The Insidious Effect of Noise and the Role of Noise Models. Trends in Renewable Energy, 2(2), 61-82. DOI: 10.17737/tre.2016.2.2.002

    Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models (Class Maps) – Part 3: The Case of Overhead Transmission Power Grids

    Get PDF
    In [1], [2], the theoretical framework and the numerical results concerning the class mapping of overhead and underground medium voltage broadband over power lines (OV and UN MV BPL) topologies have been presented on the basis of the recently proposed initial statistical hybrid model (iSHM), modified statistical hybrid model (mSHM) and class map definition procedure. In this paper, all the recent findings regarding the statistical channel modeling and class mapping are first applied to transmission BPL networks; say, OV high voltage (HV) BPL topologies. The numerical results of OV HV BPL networks are compared against the respective ones of OV and UN distribution networks revealing significant similarities and differences. Finally, the impact of considering minimum or maximum capacity value instead of the average one during the definition procedure is investigated as well as the behavior of the total simulation time of class mapping.Citation: Lazaropoulos, A. G. (2019). Virtual Indicative Broadband over Power Lines Topologies for Respective Subclasses by Adjusting Channel Attenuation Statistical Distribution Parameters of Statistical Hybrid Models (Class Maps) – Part 3: The Case of Overhead Transmission Power Grids. Trends in Renewable Energy, 5, 282-306. DOI: 10.17737/tre.2019.5.3.0010

    Smart Energy and Spectral Efficiency (SE) of Distribution Broadband over Power Lines (BPL) Networks – Part 1: The Impact of Measurement Differences on SE Metrics

    Get PDF
    This paper assesses the impact of measurement differences on the spectral efficiency (SE) of distribution broadband over power lines (BPL) networks when CS2 module is applied. The broadband performance of distribution BPL networks is investigated in the 3-88 MHz frequency range when appropriate injected power spectral density limits (IPSD limits) and uniform additive white Gaussian noise (AWGN) PSD levels from the BPL literature are assumed. The impact of measurement differences on SE of the distribution BPL networks is here assessed through appropriate SE metrics. These SE metrics assessing this impact are detailed in order to act as the benchmark metrics of the countermeasures techniques against measurement differences of the companion paper.Citation: Lazaropoulos, A. G. (2018). Smart Energy and Spectral Efficiency (SE) of Distribution Broadband over Power Lines (BPL) Networks – Part 1: The Impact of Measurement Differences on SE Metrics. Trends in Renewable Energy, 4, 125-184. DOI: 10.17737/tre.2018.4.2.007

    PLC for the smart grid: state-of-the-art and challenges

    Get PDF
    This paper aims to review systems and applications for power line communications (PLC) in the context of the smart grid. We discuss the main applications and summarise state-of-the-art PLC systems and standards. We report efforts and challenges in channel and noise modelling, as well as in state-of-the-art transmission technology approaches

    Policies for Carbon Energy Footprint Reduction of Overhead Multiple-Input Multiple-Output High Voltage Broadband over Power Lines Networks

    Get PDF
    The impact of different environmental policies on the broadband performance of overhead multiple-input multiple-output high-voltage/broadband over power lines (MIMO/HV/BPL) networks is investigated in this paper. The examined environmental policies focus on the carbon energy footprint reduction of overhead MIMO/HV/BPL networks while respecting their broadband character.The contribution of this paper is three-fold. First, the spectral and environmental performance of various configurations and topologies of overhead MIMO/HV/BPL networks is assessed with regard to respective spectral efficient (SE) and newly presented environmental efficient (EE) metrics. Second, further insights regarding the performance of overhead MIMO/HV/BPL networks highlight the better spectral and environmental performance of these networks against other today’s overhead HV/BPL networks, such as single-input single-output (SISO), single-input multiple-output (SIMO), or multiple-input single-output (MISO) ones. Third, the definition of appropriate environmental policies that optimize the coexistence of the three main sectors of concern, which are the Quality of Service (QoS) requirements, protection of existing radioservices and promotion of environmentally aware limits, is promoted. Towards that direction, the proposed SE/EE trade-off relation of this paper is expected to prove an extremely helpful SE/EE optimization technique.Citation: Lazaropoulos, A. G. (2015). Policies for Carbon Energy Footprint Reduction of Overhead Multiple-Input Multiple-Output High Voltage Broadband over Power Lines Networks. Trends in Renewable Energy, 1(2), 87-118. DOI: 10.17737/tre.2015.1.2.001
    • …
    corecore