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This second paper assesses the performance of piecewise monotonic 
data approximations, such as L1PMA, L2WPMA and L2CXCV, against 
the measurement differences during the spectral efficiency (SE) 
calculations in overhead medium-voltage broadband over power lines 
(OV MV BPL) networks. In this case study paper, the performance of the 
aforementioned three already known piecewise monotonic data 
approximations, which are considered as countermeasure techniques 
against measurement differences, is here extended during the  
SE computations. The indicative BPL topologies of the first paper are 
again considered while the 3-30MHz frequency band of the  
BPL operation is assumed. 
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1. Introduction 
  

Smart energy is a sustainable and worthwhile energy system where energy 

production, transmission and delivery are integrated and coordinated with the energy 

consumption, smart grid applications, energy services, active producers / consumers, 

renewable / storage solutions and enabling communications technologies. However, the 

emerging advanced IP-based power network requires high spectral efficiency (SE) 

potential so that the supported plethora of relevant broadband applications can be easily 

supported [1]-[3].  

 Among the enabling communications technology solutions of the smart grid, 

Broadband over Power Lines (BPL) technology attracts the interest of many decision 

makers due to the low installation cost of the BPL devices on the existing power grid 

infrastructure. Already presented in [4], the spectral behavior of distribution BPL 

networks –i.e., overhead (OV) and underground (UN) medium-voltage (MV) and  

low-voltage (LV) BPL networks– is assessed through the hybrid model [5]-[22].  

In this paper, CS2 module, which constitutes a refinement of the hybrid model 

concerning its containing top-down approach, is adopted. On the basis of the SE,  
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the impact of CS2 module and of the measurement differences between the experimental 

and theoretical results on the broadband performance of the distribution BPL networks 

has been assessed in [4]. Here, it should be noted that measurement differences have been 

handled as error distributions and especially by following continuous uniform 

distributions (CUDs) of maximum and minimum value 𝑎CUD and -𝑎CUD, respectively. 

The assessment has been accomplished through the lens of appropriate statistical 

performance metrics of SE that are classified into two metric sets. Set A consists of the 

maximum, minimum and average SE while Set B comprises the mean absolute error 

(MAE) and the root mean square deviation (RMSD) of SE. 

 To mitigate the aforementioned measurement differences that further affect the 

statistical performance metrics, three well-known piecewise monotonic data 

approximations (i.e., L1PMA, L2WPMA and L2CXCV) are going to be applied  

[23]-[32]. Until now, L1PMA, L2WPMA and L2CXCV have been applied and examined 

in transmission and distribution BPL networks in order to counteract the occurred 

measurement differences during the channel attenuation computations [31]-[37].  

Useful results, which are going to be adopted in this paper, concerning the application 

properties of piecewise monotonic data approximations against the measurement 

differences during the channel attenuation computations have been deduced in [36], [37]. 

On the basis of these application properties, the application of the piecewise monotonic 

data approximations is extended to the SE results in order to reveal the theoretical SE 

values by ignoring the fluctuations of channel attenuation computations due to the 

measurement differences and without knowing the CUD measurement difference 

properties (i.e., maximum and minimum values of the CUD measurement distributions). 

The countermeasure efficiency of the L1PMA, L2WPMA and L2CXCV against the 

measurement differences during the SE computation is assessed for comparison reasons 

on the basis of: (i) the main performance metric of the piecewise monotonic data 

approximation method [33], [36], that is the percent error sum (PES); and  

(ii) the statistical performance metrics of set A and B that already been applied in [4]. 

The rest of this paper is organized as follows: In Sec.2, a brief presentation of the 

L1PMA, L2WPMA and L2CXCV is given. Sec.3 synopsizes the applied performance 

metrics, already been presented in [4]. The strong and the weak points of the performance 

metrics are demonstrated. Sec.4 discusses the simulation results of various distribution 

BPL topologies intending to mark out the efficiency of L1PMA, L2WPMA and 

L2CXCV against the restoration of the theoretical SE when measurement differences of 

various CUD properties are considered. Sec.5 concludes this paper. 

 

 

2. Measurement Differences and Piecewise Monotonic Data Approximation 
Methods 
 
2.1 Measured and Theoretical SE 
 As already been mentioned in [4], [36], [37], a number of practical reasons and 

“real-life” conditions create significant differences between experimental measurements 

and theoretical results during the determination of transfer functions. However, these 

transfer function computation fluctuations affect SE.  

In fact, the measurement differences that occur during the transfer function 

determination of BPL networks indirectly affect the determination of SE. Numerically, 
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when measurement differences are taken into consideration, the measured distribution 

BPL coupling transfer function 𝐻C̅̅ ̅̅ {∙} for given coupling scheme C is determined by 

𝐻C̅̅ ̅̅ (𝑓𝑖) = 𝐻C(𝑓𝑖) + 𝑒(𝑓𝑖)                                               (1) 

where fi, i=1,…,u denotes the measurement frequency, 𝐻𝐶(𝑓𝑖) is the theoretical coupling 

transfer function that is given by the application of the hybrid model presented in [4],  

e(fi) synopsizes the total measurement difference that follows continuous uniform 

distributions (CUDs) in dB with minimum value −𝑎CUD and maximum value 𝑎CUD and  

u is the number of subchannels in the examined frequency range. On the basis of eq. (3) 

of [4], the measured and theoretical SE for given coupling scheme channel C can be 

respectively determined by 

𝑆𝐸𝐶̅̅ ̅̅ ̅(𝑓𝑖) = log2 {1 + [
〈𝑝(𝑓𝑖)〉𝐿

〈𝑁(𝑓𝑖)〉𝐿
∙ |𝐻C̅̅ ̅̅ (𝑓𝑖)|

2
]} , 𝑖 = 1, … , 𝑢                  (2) 

𝑆𝐸𝐶(𝑓𝑖) = log2 {1 + [
〈𝑝(𝑓𝑖)〉𝐿

〈𝑁(𝑓𝑖)〉𝐿
∙ |𝐻𝐶(𝑓𝑖)|2]} , 𝑖 = 1, … , 𝑢                   (3) 

where 𝑝{∙}  are appropriate IPSD limits expressed in dBm/Hz that ensure the low 

electromagnetic interference (EMI) of BPL system operation to the other 

telecommunication systems that operate at the same frequency band, 𝑁{∙} are uniform 

additive white Gaussian noise (AWGN) PSD levels expressed in dBm/Hz and 
L

  is an 

operator that converts dBm/Hz into a linear power ratio (W/Hz). By comparing eqs. (2) 

and (3), it is evident that SE depends on the assumed coupling transfer function while 

significant differences between measured and theoretical coupling transfer functions 

entail differences between measured and theoretical SE. 

 In order to cope with the measurement differences, various monotonic data 

approximation methods, which treated as countermeasure techniques against 

measurement differences, have been proposed by Demetriou, such as L1PMA, L2WPMA 

and L2CXCV [23]-[32]. Their countermeasure efficiency against measurement 

differences during the determination of the coupling transfer functions of distribution 

BPL networks has been extensively validated in [34]-[41] while a number of useful smart 

grid applications concerning the power grid monitoring and control have been proposed 

on the basis of these piecewise monotonic data approximations. Here, the aforementioned 

three piecewise monotonic data approximations are applied in order to reveal the 

theoretical SE when measured SE, the distribution BPL topology and the applied 

coupling scheme are already known. Actually, piecewise monotonic data approximations 

aim at mitigating the deviations between the measured and the theoretical SE which are 

the result of the existence of measurement differences. With reference to eq. (2) and (3), 

piecewise monotonic data approximations give as output the approximated SE for given 

coupling scheme channel C, say: 

𝑆𝐸𝐶̿̿ ̿̿ ̿(𝑓𝑖) = 𝑞{𝑆𝐸𝐶̅̅ ̅̅ ̅(𝑓𝑖)}, 𝑖 = 1, … , 𝑢                                 (4) 

where 𝑞{∙}  is the general function of the applied piecewise monotonic data 

approximations. It should be noted that during the determination of the approximated SE 

of eq. (4), CUD properties of measurement differences are not known.  

 To apply the aforementioned three piecewise monotonic data approximations  

(i.e., L1PMA, L2WPMA and L2CXCV) and to determine the piecewise monotonic data 

approximation of eq. (4), the special application characteristics of each one are mentioned 

in the following subsections. 

 
2.2 L1PMA 
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 L1PMA decomposes the input data (i.e., SE data in this paper) into separate 

monotonous sections between its adjacent turning points (primary extrema) by exploiting 

the piecewise monotonicity property of transmission and distribution BPL transfer 

functions [25], [26]. On the basis of the minimization of the moduli sum between the 

output data (L1PMA approximation data of SE) and input data into the separate 

monotonous sections, L1PMA achieves to mitigate the uncorrelated SE differences, 

which come from the assumed measurement differences, by neglecting the existence of 

few large ones [33], [36], [37]. The L1PMA application is based on the Fortran software 

package that is freely available online in [42] receives as inputs the measured SE,  

the measurement frequencies and the number of monotonic sections (i.e., either user- or 

computer-defined) and primarily gives as output the best fit of the measured SE.  

As already been presented in [36], [37], critical role during the computation of the best of 

the measured SE plays the selection of the number of the monotonic sections. 

 
2.3 L2WPMA 
 Similarly to L1PMA, L2WPMA decomposes the examined input data (i.e., either 

transfer function data or SE data of this paper), which are contaminated by measurement 

differences, into separate monotonous sections between its primary extrema [31], [36], 

[37]. L2WPMA is implemented by a Fortran software package that is freely available 

online in [31]. As in L1PMA case, L2WPMA software receives as input the measured 

SE, the measurement frequencies and the number of monotonic sections and primarily 

gives as output a spline representation of the measured SE. Conversely to L1PMA, 

L2WPMA focuses on the first divided of input data and demands the minimization of the 

weighted sum of the square of the measurement differences by requiring specific number 

of sign changes. The number of sign changes is equal to the number of monotonic 

sections minus one. Again, the number of monotonic sections is either user- or  

computer-defined. 

 
2.4 L2CXCV 
 In accordance with [32], [36], [37], L2CXCV smooths the input data with 

measurement differences in the least square error sense. In contrast with L1PMA and 

L2WPMA, L2CXCV does not focus on the number of monotonic sections but on the 

second divided differences of the smoothed values by solving a strictly convex quadratic 

programming problem for each set [32]. Similarly to L1PMA and L2CXCV, the Fortran 

software package that is applied to implement L2CXCV is freely available online in [43]. 

In general, L2CXCV receives as input the measured SE and gives as output the fit of the 

measured SE. 

 

3. Performance Metrics 
 
3.1 PES 
 In accordance with [33], [36], PES is the main performance metric that is 

employed to assess the approximation accuracy when piecewise monotonic data 

approximation methods are applied in BPL networks. More specifically, in this paper, 

PES expresses as a percentage the total sum of the relative differences between the 

examined SE and the theoretical SE for all the used frequencies. There are two 

submetrics of PES that should be compared in order to benchmark the mitigation 

efficiency of the applied piecewise monotonic data approximation method, say:  
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• PESmeas: This PES submetric examines the relative difference between the SE, 

which is affected by the measurement differences, and the theoretical SE.  

With reference to eqs. (2) and (3), PESmeas is given by:  

𝑃𝐸𝑆meas = 100% ∙
∑ |𝑆𝐸𝐶̅̅ ̅̅ ̅̅ (𝑓𝑖)−𝑆𝐸𝐶(𝑓𝑖)|𝑢

𝑖=1

∑ |𝑆𝐸𝐶(𝑓𝑖)|𝑢
𝑖=1

                                   (5) 

• PESapprox: This PES submetric examines the relative difference between the 

approximated and the theoretical SE. With reference to eqs. (3) and (4), PESapprox 

is given by:  

𝑃𝐸𝑆approx = 100% ∙
∑ |𝑆𝐸𝐶̿̿ ̿̿ ̿̿ (𝑓𝑖)−𝑆𝐸𝐶(𝑓𝑖)|𝑢

𝑖=1

∑ |𝑆𝐸𝐶(𝑓𝑖)|𝑢
𝑖=1

                                 (6) 

From eqs. (5) and (6), the PES difference that is given by 

Δ𝑃𝐸𝑆 = 𝑃𝐸𝑆meas − 𝑃𝐸𝑆approx                                        (7) 

determines the quality of the approximation. If ΔPES is positive, the examined 

approximation method successfully mitigates the measurement differences. ΔPES helps 

towards the determination of the optimal number of monotonic sections of L1PMA and 

L2WPMA [36], [37].  

 
3.2 Metrics of Set A and B 
 In accordance with [4], two sets of performance metrics (i.e., Set A and B) can be 

applied in order to assess either the SE impact of measurement differences or the  

SE mitigation efficacy of piecewise monotonic data approximations against measurement 

differences. Both performance metrics sets can give benchmark results to the 

aforementioned two issues. In [4], both sets have been applied and have assessed the  

SE impact of measurement differences. On the basis of the results of [4], these sets are 

here adopted in order to assess the mitigation efficiency of measurement differences by 

three piecewise monotonic data approximations. The first set of performance metrics, 

which is denoted as Set A, concerns the influence of the measurement differences on the 

general properties of the SE results while the second set, which is denoted as Set B, 

assesses the SE impact intensity of measurement differences. More specifically: 

• Set A: With reference to eqs. (2) and (3), it is assumed that the measured and 

theoretical SE for given coupling scheme channel C are already known.  

Set A consists of the metrics of: (i) average value of SE; (ii) maximum value of 

SE; and (iii) minimum value of SE. Since measured SE is infected by unbiased 

measurement differences, it is expected that average, maximum and minimum 

values remain almost the same with the respective metrics of the theoretical SE. 

This has already been verified in [4]. Hence, the metrics of set A are unable to 

identify the existence and the intensity of measurement differences although even 

small divergences of the three metrics indicate the existence of measurement 

differences. If measurement differences occur and piecewise monotonic data 

approximations are applied in order to mitigate these measurement differences, 

the set A metrics of the approximated SE of eq. (4) should remain almost the 

same with the respective metrics of the theoretical SE.  

Therefore, the set A metrics act as an integrity metric for the countermeasures 

techniques of [4]. 

• Set B: Set B consists of two metrics, say: (i) MAE; and (ii) RMSD.  

With reference to [4] and in contrast with the metrics of Set A, the metrics of  

Set B can not only detect the existence but also to assess the intensity of the 
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measurement differences. In fact, the values of the Set B metrics increase with the 

increase of the measurement difference 𝑎CUD . Anyway, the set B metrics 

constitute comparison metrics between measured and theoretical SE.  

If measurement differences occur and piecewise monotonic data approximations 

are applied in order to mitigate these measurement differences, the set B metrics 

of the approximated SE of eq. (4) should give closer values to the theoretical ones 

in comparison with the respective metrics of the measured SE. 

 

 

4. Numerical Results and Discussion 
  

Various topologies of OV MV BPL networks, which have been presented in 

Sec.2.2 of [4] and are also common in [36], [37], are here simulated with the purpose of 

comparatively benchmarking the SE mitigation efficiency of L1PMA, L2WPMA and 

L2CXCV against measurement differences added during the transfer function 

determination.  

As the propagation and transmission specifications are regarded, those are the 

same with [33]-[37]. Arbitrarily, the WtG1 coupling scheme is applied during the 

following simulations. As it is usually done [5], [11], [13], [44], the selection of 

representative coupling schemes is a typical procedure for the sake of reducing 

manuscript size. 

As the spectral exploitation properties are concerned, injected power spectral 

density limits (IPSD limits) of Ofcom are adopted [4]-[13], [45]-[51], while a uniform 

AWGN PSD levels ( )fN  will be assumed equal to 105− dBm/Hz in the case of  

OV MV BPL networks. In order to compute SE of OV MV BPL topologies,  

the BPL frequency range and flat-fading subchannel frequency spacing are first assumed 

equal to 3-30MHz and 0.1MHz, respectively, so that the required SE accuracy can be 

preserved. However, in order to apply the piecewise monotonic data approximations, the 

flat-fading subchannel frequency spacing is assumed equal to 0.1MHz. The latter 

specification has been made so that: (i) the results of SE can clearly be presented in the 

following figure; and (ii) the results concerning the selection of monotonic sections can 

be comparable with the respective results of [36], [37] that deal with the application 

behavior of piecewise monotonic data approximations in channel attenuation results.  

For the latter case, note that the BPL frequency range and flat-fading subchannel 

frequency spacing are assumed equal to 1-30MHz and 1MHz, respectively, in [36], [37].  

Finally, as the nature of measurement differences and the mitigation of 

measurement differences are concerned, unbiased measurement differences are assumed, 

which affect the measurements of channel attenuation –see eqs. (1) and (2)– and [4]. 

Measurement differences follow continuous uniform distributions (CUDs) with minimum 

value −𝑎CUD and maximum value 𝑎CUD. The piecewise monotonic data approximations 

are applied when the measured SE of eq. (1) are known for given maximum value 𝑎CUD  

and the approximation results of piecewise monotonic data approximations are directly 

compared against the theoretical SE of eq. (2). Afterwards, the aforementioned difference 

is compared against the difference between the measured and the theoretical SE.  

The mitigation efficiency of piecewise monotonic data approximations depends on the 

relation between the aforementioned two differences. 
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4.1 SE ΔPES of L1PMA, L2WPMA and L2CXCV against Measurement 
Differences 
 By simply maintaining the monotonicity pattern, piecewise monotonic data 

approximations achieve to mitigate the additive measurement differences so that 

approximations that resemble the theoretical data can be made [36]. To examine the 

impact of measurement differences on the SE of OV MV BPL topologies and the 

potential of counterbalancing the measurement differences, in Figs. 1(a)-(d), the 

theoretical and the measured SE are plotted versus frequency for the four indicative  

OV MV BPL topologies, respectively. Note that the measured SE corresponds to 

measurement difference CUD of 𝛼CUD=5dB. Also, in each figure, apart from the 

theoretical and measured SE curves, three L1PMA SE approximation curves are also 

presented when the number of monotonic sections is assumed to be equal to 2, 5 and 20. 

In Figs. 2(a)-(d) and 3(a)-(d), same plots are given with Figs. 1(a)-(d) but for the 

application of L2WPMA and L2CXCV, respectively. 

Comparing Figs. 1-3 and Figs. 2-4 of [36], certain similarities and differences 

between SE and channel attenuation approximations can be pointed out: 

• In [36], piecewise monotonic data approximations have mitigated the 

measurement differences that had been added to the measured channel attenuation 

while, in this paper, piecewise monotonic data approximations try to mitigate the 

measured SE whose calculations are based on the measured channel attenuation. 

Hence, piecewise monotonic data approximations have directly mitigated the 

measurement differences in [36] while they indirectly mitigate measurement 

differences in this paper. 

• Although piecewise monotonic data approximations indirectly mitigate the 

measurement differences in this paper, L1PMA, L2WPMA and L2CXCV can 

satisfactorily retrieve the theoretical SE properties of the indicative OV MV BPL 

topologies.  

• The performance of piecewise monotonic data approximations strongly depends 

on the examined OV MV BPL topology, the maximum value 𝛼CUD of the applied 

measurement difference CUD and the number of monotonic sections.  

• As the mitigation performance of piecewise monotonic data approximations is 

examined with relation to the OV MV BPL topology, the presence of many short 

branches along the end-to-end transmission path entails a rich multipath 

environment. As already been mentioned in [33], [36], the spectral notches 

(extrema) that appear in the rich multipath environments (i.e., urban case) require 

additional monotonic sections so that the SE approximation may be accurate. 

Thanks to their adjustable number of monotonic sections, L1PMA and L2WMPA 

can be adaptive in order to improve their approximation efficiency by focusing on 

the improvement of SE ΔPES. Conversely, when OV MV BPL topologies of low 

number and long branches are examined (i.e., “LOS”, rural and suburban case), 

L1PMA and L2WPMA need low number of monotonic sections so that high SE 

ΔPES can be achieved. Also, L2CXCV, which does not take as input monotonic 

sections, can provide very good approximations of SE curves for specific OV MV 

BPL topologies. 

To more elaborately examine the SE approximation by applying piecewise monotonic 

approximations, the relation among SE approximation accuracy, the maximum value 

𝛼CUD, the applied piecewise monotonic data approximation and the number of monotonic 
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sections should be investigated. As already been mentioned in Sec.3.1, SE ΔPES acts as 

the main metric that assesses the mitigation efficiency of the piecewise monotonic data  
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Fig. 1. Theoretical, measured and approximated SE of indicative OV MV BPL topologies when L1PMA is 

applied, measurement difference CUD of 𝛼CUD=5dB is assumed. Three representative cases of monotonic 

sections (i.e, k=1, 2 and 20) are assumed for the SE approximation. (a) Urban case. (b) Suburban case.  

(c) Rural case. (d) “LOS” case. 
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Fig. 2. Same curves with Fig.1 but for L2WPMA. 
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Fig. 3. Same curves with Fig.1 but for L2CXCV. 

 

 

approximations. For the Figs. 1-3, the SE ΔPES curves of the applied piecewise 

monotonic data approximations are given in Figs. 4-6, respectively, when various 

measurement difference CUDs and number of monotonic sections are considered.  

In fact, maximum value 𝛼CUD that ranges from 0 to 5dB is assumed.  

On the basis of Figs. 4-6, the maximum SE ΔPES and the corresponding number of 

monotonic sections are reported in Tables 1-3 when L1PMA, L2WPMA and L2CXCV 

are applied, respectively. 
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Fig. 4. SE ΔPES of indicative OV MV BPL topologies when L1PMA is applied and measurement 

difference CUD of 𝛼CUD=5dB is assumed. Three representative cases of monotonic sections (i.e, k=1, 2 

and 20) are assumed for the SE approximation –see also Figs. 1(a)-(d)–. (a) Urban case. (b) Suburban case.  

(c) Rural case. (d) “LOS” case. 
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Fig. 5. Same curves with Fig.4 but for L2WPMA –see also Figs. 2(a)-(d)–. 
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Fig. 6. Same curves with Fig.4 but for L2CXCV –see also Figs. 3(a)-(d)–. 
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Table 1. Maximum ΔPES and Corresponding Number of Monotonic Sections when L1PMA is Applied  

 

Maximum 

Value αCUD 

(dB) 

 

Indicative OV MV BPL Topologies 

Urban Case A Suburban Case Rural Case “LOS” Case 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 
0 -1.92×10-5 11 -2.09×10-5 19 -1.71×10-5 5 -1.72×10-5 5 

1 -5.27×10-7 9 7.7×10-3 17 0.23 5 0.41 3 

2 0.09 11 1.47×10-6 17 0.76 1 0.71 1 

3 3.18×10-6 15 0.45 5 1.85 1 1.89 1 

4 0.17 9 0.34 5 1.58 2 1.50 2 

5 -4.97×10-6 13 0.68 5 2.33 1 2.09 1 

 

Table 2. Maximum ΔPES and Corresponding Number of Monotonic Sections when L2WPMA is Applied  

 

Maximum 

Value 

αCUD 

(dB) 

 

Indicative OV MV BPL Topologies 

Urban Case A Suburban Case Rural Case “LOS” Case 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE ΔPES 

(%) 

Number of 

Monotonic 

Sections 
0 -1.86×10-5 11 -2.15×10-5 19 -1.72×10-5 5 -1.71×10-5 5 

1 -4.30×10-7 9 -3.07×10-6 19 0.41 3 0.42 3 

2 0.23 9 0.41 7 1.28 1 1.24 1 

3 0.14 9 0.67 5 2.69 1 2.62 1 

4 0.71 9 1.23 5 1.98 2 1.95 1 

5 0.09 9 1.27 5 3.81 1 3.59 1 

 

 
Table 3. Maximum ΔPES and Corresponding Number of Monotonic Sections when L2CXCV is Applied  

 

Maximum 

Value 

αCUD 

(dB) 

 

Indicative OV MV BPL Topologies 

Urban Case A Suburban Case Rural Case “LOS” Case 

SE 

ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE 

ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE 

ΔPES 

(%) 

Number of 

Monotonic 

Sections 

SE 

ΔPES 

(%) 

Number of 

Monotonic 

Sections 
0 -13.64 - -8.25 - -0.42 - -0.29 - 

1 -15.53 - -7.16 - 0.3185 - 0.38 - 

2 -10.98 - -5.61 - 1.18 - 1.11 - 

3 -9.65 - -4.52 - 2.22 - 2.27 - 

4 -7.26 - -2.93 - 2.42 - 2.19 - 

5 -7.15 - -2.44 - 2.70 - 2.47 - 

 

 

From Figs. 4-6 and Tables 1-3, certain remarks can be reported that characterize 

the application behavior of piecewise monotonic data approximations for the various  

OV MV BPL topologies. More specifically: 

• When urban OV MV BPL topologies are examined, piecewise monotonic data 

approximations cannot satisfactorily mitigate the added measurement differences. 

Actually, when the assumed maximum value 𝛼CUD remains low (i.e., below 2dB), 

all the applied piecewise monotonic data approximations of this paper cannot 

provide a clearly better SE approximation than the measured SE since SE ΔPES 

remains marginally lower than zero in these cases. In contrast, when the assumed 

maximum value 𝛼CUD becomes high (i.e., above 2dB), L2WPMA provides  

SE approximations that are better than measured SE (i.e., SE ΔPES higher than 
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zero). These L2WPMA SE approximations are marginally better than the 

measured SE while these SE approximations of urban OV MV BPL topologies 

are achieved by using higher numbers of monotonic sections. 

• Suburban OV MV BPL topologies present a similar SE ΔPES behavior with 

urban ones. L1PMA and L2WPMA offer a marginally improved SE ΔPES 

behavior when high maximum values 𝛼CUD are observed. Although the SE 

approximation improvement still remains marginal in the majority of the 

examined cases (i.e., below 1%), a relatively high number of monotonic sections, 

but smaller than the number of monotonic sections used in urban OV MV BPL 

topologies, is required. Either urban or suburban OV MV BPL topologies are 

examined, L2CXCV fail in all the cases to mitigate the measurement differences. 

Anyway, this behavior of L2CXCV in urban and suburban OV MV BPL 

topologies has also been verified when L2CXCV achieves to directly mitigate the 

measurement differences in channel attenuations curves (see Tables 2 and 3 of 

[36]). 

• On the basis of the achieved SE ΔPES, all the applied piecewise monotonic data 

approximations provide significant improvement concerning the mitigation of 

measurement differences when SE is examined. The SE ΔPES improvement can 

reach up to 3.59% when severe measurement differences (i.e., maximum values 

𝛼CUD of 5dB) are observed. Since rural and “LOS” OV MV BPL topologies 

present low and rare spectral notches, simple approximations, which ignore the 

frequent notches imposed by the measurement differences, can achieve high SE 

ΔPES. Therefore, due to this poor multipath environment of rural and “LOS” OV 

MV BPL topologies, L1PMA and L2WPMA require low number of monotonic 

sections to achieve these rather simple approximations. Since the simple 

approximations are the more suitable for the rural and “LOS” OV MV BPL 

topologies, L2CXCV also achieves high ΔPES in these cases.  

• Although different CUDs are assumed between this paper and [36] and the nature 

of the measurement difference mitigation differs (i.e., direct or indirect 

measurement difference mitigation), the results concerning the assessment of 

piecewise monotonic data approximations remain approximately the same:  

o The main contribution of piecewise monotonic data approximations 

against measurement differences is focused on rural and “LOS” OV MV 

BPL topologies when high maximum values 𝛼CUD are considered. In these 

cases, L2WPMA and L2CXCV can offer SE ΔPES that reaches up to 

3.81%. 

o Comparing Tables 1-3 of this paper with the Tables 2-5 of [36],  

small differences between the relative ranking of L2WPMA and L2CXCV 

are due to: (i) the different CUDs that are applied in these two papers; and 

(ii) the nature of the measurement difference mitigation.  

o With reference to the SE ΔPES, the best SE approximation for given OV 

MV BPL topology and maximum value 𝛼CUD=5dB is highlighted with 

blue color in Table 2 (i.e., blue L2WPMA SE approximations).  

Apart from SE ΔPES, to evaluate the quality of the approximations, the metrics of the set 

A and B of the SE approximations should tend to the respective metrics of the  

theoretical SE. In the following subsection, the blue L2WPMA SE approximations will 
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be benchmarked against the respective theoretical SE and measured SE with reference to 

the metrics of set A and B. 

 

4.2 Case Study – Piecewise Monotonic Data Approximations and Metrics of  
Set A and B 
 Apart from the improvement of SE ΔPES, which remains the basic metric of 

approximation evaluation, the metrics of set A and B of SE piecewise monotonic data 

approximations should comply with the respective metrics of the theoretical SE so that 

the approximation can be considered as successful for various computations.  

In the case study of this subsection, the metrics of the blue L2WPMA SE approximations 

of Sec.4.1 will be compared against the respective ones of the theoretical and measured 

SE. More specifically: 

• Set A: The metrics of Set A are: (i) the average value of SE; (ii) the maximum 

value of SE; and (iii) the minimum value of SE. In Table 4, the metrics of Set A 

are reported for the theoretical SE, measured SE and the blue L2WPMA SE 

approximations for the indicative OV MV BPL topologies of this paper when the 

maximum value 𝛼CUD is assumed equal to 5dB. 

• Set B: The metrics of Set B are: (i) MAE; and (ii) RMSD. In Table 5, the metrics 

of Set B are reported for the theoretical SE, measured SE and the blue L2WPMA 

SE approximations for the indicative OV MV BPL topologies of this paper when 

the maximum value 𝛼CUD is assumed equal to 5dB. 

From Tables 4 and 5, piecewise monotonic data approximations not only improve the  

SE subchannel estimation but also improve the macroscopic SE estimation that is 

described by the metrics of Set A and Set B. More specifically: 

• As blue L2WPMA SE approximation is assumed, its average values of  

SE remains greater or equal to the respective values of measured SE in all the 

indicative OV MV BPL topologies that are examined. In fact, the average values 

of SE of the blue L2WPMA SE approximation are closer to the respective values 

of the theoretical SE in comparison with the respective values of SE. This is valid 

even if high intensity of measurement differences is considered  

(i.e., the maximum value 𝛼CUD is assumed equal to 5dB). Same observations can 

also be made in the cases of the maximum and minimum value of SE.  

• MAE and RMSD describe the deviation among the approximated, measured and 

theoretical SE data. Hence, the metrics of set B again validate the mitigation 

success of the blue L2WPMA SE approximation against measurement 

differences. In all the cases examined, blue L2WPMA SE approximation achieved 

MAE and RMSD with values lower or equal than the respective values of the 

measured SE. Also, the values of MAE and RMSD of the blue L2WPMA SE 

approximation tend to the zero values of the theoretical SE. 

• Already been mentioned in [4], the metrics of set A cannot identify the intensity 

of measurement differences since the differences remain marginal.  

In contrast, the metrics of set B, which behave similar to PES, depend on the 

existence and the intensity of the measurement differences.  
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Table 4. Metrics of Set A for the Theoretical SE, Measured SE and blue L2WPMA SE approximations. 
Indicati

ve OV 

MV 

BPL 

Topolog

y 

Metrics of Set A 

Average Value of SE  

(bps/Hz) 

Maximum Value of SE  

(bps/Hz) 

Minimum Value of SE  

(bps/Hz) 

Theoretic
al SE 

Measur
ed SE 

(𝛼CUD=5

) 

Blue  
L2WPMA 

SE 

Approximati
on 

Theoretic
al SE 

Measur
ed SE 

(𝛼CUD=5

) 

Blue 
L2WPMA 

SE 

Approximati
on 

Theoretic
al SE 

Measur
ed SE 

(𝛼CUD=5

) 

Blue 
L2WPMA 

SE 

Approximati
on 

Urban 

Case A 

10.08 9.86 9.86 13.60 14.22 14.22 1.91 2.36 2.36 

Suburba
n Case 

12.03 11.81 11.83 14.35 14.63 14.31 6.98 6.13 6.13 

Rural 

Case 

13.85 13.60 13.65 14.25 14.95 14.34 12.92 12.32 12.71 

“LOS” 
Case 

13.98 13.71 13.76 14.37 14.95 14.42 12.88 12.49 12.72 

 

 
Table 5. Metrics of Set B for the Theoretical SE, Measured SE and blue L2WPMA SE approximations. 

 

Indicative OV MV 

BPL Topology 

Metrics of Set B 

MAE  

(bps/Hz) 

RMSD  

(bps/Hz) 

Theoretical 

SE 

Measured 

SE 

(𝛼CUD=5) 

Blue  

L2WPMA SE 
Approximation 

Theoretical 

SE 

Measured 

SE 

(𝛼CUD=5) 

Blue 

L2WPMA SE 
Approximation 

Urban Case A 0 0.78 0.78 0 0.92 0.89 

Suburban Case 0 0.79 0.64 0 0.93 0.80 

Rural Case 0 0.76 0.23 0 0.89 0.31 

“LOS” Case 0 0.75 0.24 0 0.87 0.32 

 

 

• Piecewise monotonic data approximations can act as a prerequisite subsystem 

when measurement differences exist. In fact, their presence becomes more critical 

when measurement differences of high intensities are present. If the suitable 

piecewise monotonic data approximation is selected, the measurement difference 

mitigation results can be achieved regardless of the maximum value 𝛼CUD. 

• The most crucial role for achieving high performances against measurement 

differences regardless of their maximum value 𝛼CUD plays the selection of the 

suitable piecewise monotonic data approximation as well as its optimal number of 

monotonic sections. On the basis of the results of this Section and in accordance 

with [36], [37], the optimal number of monotonic sections can determine:  

(i) the accuracy of L1PMA and L2WPMA as expressed by PES;  

(ii) the accuracy of L1PMA and L2WPMA as expressed by the metrics of Set A 

and B; and (iii) the performance accuracy of the piecewise monotonic data 

approximations that use monotonic sections against the approximations that do 

not use (i.e., L2CXCV).  

• The indirect mitigation of measurement differences by using piecewise monotonic 

data approximations has revealed that even if same OV MV BPL topologies are 

examined the metric results are differentiated because of the different applied 

coupling schemes and the optimal number of monotonic sections. As concerns the 

direct mitigation of measurement differences by using piecewise monotonic data 

approximations, exhaustive investigation has been made in [33], [36], [37] for the 

impact of specific factors, such as the applied coupling scheme, the examined OV 

MV BPL topology, the maximum CUD value and the optimal number of 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 185-212. doi: 10.17737/tre.2018.4.2.0077 208 

 

monotonic sections [33], [36], [37]. The observations made there are also valid 

during the indirect mitigation of measurement differences.   

 

5. Conclusions 
  

 This paper constitutes a case study on the indirect measurement difference 

mitigation during SE computations in OV MV BPL networks by applying L1PMA, 

L2WPMA and L2CXCV. This paper has exploited the direct measurement difference 

mitigation observations during channel attenuation computations in distribution BPL 

networks. The impact of the different piecewise monotonic data approximations,  

the different OV MV BPL topologies, the number of monotonic sections (when they are 

required) and different types and intensities of measurement differences have been 

assessed. With reference to PES, it has been proven that the piecewise monotonic data 

approximations can provide significant mitigation of measurement differences during  

SE computations. The SE performance characteristics of piecewise monotonic data 

approximations is related with the respective channel attenuation performance 

characteristics. Since suitable piecewise monotonic data approximations have been 

selected, the maximum SE, minimum SE, average SE, SE MAE and SE RMSD of the 

approximation present values that are closer to the theoretical ones in comparison with 

the respective values of the measurements. Higher measurement difference mitigation 

performances are achieved when higher maximum values 𝛼CUD of the CUD measurement 

differences are assumed. 
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