235 research outputs found

    Distributions of Upper PAPR and Lower PAPR of OFDM Signals in Visible Light Communications

    Full text link
    Orthogonal frequency-division multiplexing (OFDM) in visible light communications (VLC) inherits the disadvantage of high peak-to-average power ratio (PAPR) from OFDM in radio frequency (RF) communications. The upper peak power and lower peak power of real-valued VLC-OFDM signals are both limited by the dynamic constraints of light emitting diodes (LEDs). The efficiency and transmitted electrical power are directly related with the upper PAPR (UPAPR) and lower PAPR (LPAPR) of VLC-OFDM. In this paper, we will derive the complementary cumulative distribution function (CCDF) of UPAPR and LPAPR, and investigate the joint distribution of UPAPR and LPAPR.Comment: acceptted by IEEE ICASSP 2014. arXiv admin note: text overlap with arXiv:1304.019

    Asymmetrical hybrid optical OFDM for visible light communications with dimming control

    No full text
    This letter proposes an asymmetrical hybrid optical orthogonal frequency division multiplexing (AHO-OFDM) scheme for dimmable visible light communication systems. In the proposed scheme, either asymmetrically clipped optical OFDM (ACO-OFDM) or pulse-amplitude-modulated discrete multitone (PAM-DMT) signal is inverted and then both the signals are combined for transmission, where pulsewidth modulation is no longer required for dimming control. The power of ACO-OFDM and PAM-DMT signals is adjusted so that the amplitude of the combined AHO-OFDM signal is asymmetrical, which could utilize all the available subcarriers as well as the entire dynamic range of light-emitting diodes with various dimming levels. Simulation results show that the proposed scheme could achieve a wide dimming range with a small throughput fluctuation

    Dimming control in visible light communication using RPO-OFDM and concatenated RS-CC

    Get PDF
    Increasing wireless data traffic is creating pressure on the conventional dwindling radio frequency spectrum. A new and reliable communication medium becomes a necessity. Visible Light Communication (VLC), a subset of optical wireless communication uses the visible light spectrum between 400 and 800 THz as a medium for communication. VLC utilizes the illumination of LED to establish a communication medium. The research focused on achieving a successful VLC communication link at low intensities of light without affecting the speed, accuracy and efficiency of VLC. The achievement of the paper was to devise a method to reduce the LED brightness, reducing energy consumption and most importantly maintain a reliable, efficient and successful VLC communication link at low intensities of LED. The research comprises of a Reverse Polarity Optical-Orthogonal Frequency Division Multiplexing (RPO-OFDM) modulator, a Forward Error Correction (FEC) encoder block that uses concatenated Reed Solomon - Convolutional Coding, a digital PWM dimming control circuit, an RPO-OFDM demodulator and a FEC decoder. The decoding is performed using the Berlekamp-Massey algorithm and the Viterbi algorithm. Extensive research on various modulation schemes, coding and error correction techniques along with various driver circuit design for dimming control in VLC were thoroughly investigated to conclude the best reliable solution for dimming control in VLC

    The Spatial Dimming Scheme for the MU-MIMO-OFDM VLC System

    Get PDF
    Multiuser visible light communication (MU-VLC) systems utilizing multiple-input multiple-output (MIMO) and orthogonal frequency-division multiplexing (OFDM) are gaining increased attentions recently. Visible light communication (VLC) links are expected to work under different illumination conditions and, thus, the need for dimming control mechanisms. However, the traditional analog- and digital-based dimming schemes have adverse effects on the data communications performance, such as clipping distortion and the variation of the duty cycle. In this paper, spatial dimming schemes based on the zero-forcing and the minimum mean-squared error precoding schemes are proposed for direct-current biased optical OFDM based indoor MU-MIMO VLC system, and the bipolar optical OFDM signal is biased by a fixed dc level. Transmit antenna selection algorithms are designed for the optimum working light emitting diodes (LEDs) subset at each dimming level. Owing to the simultaneously exploration of the selection diversity of LEDs-based lights and the channel state information, the proposed spatial dimming schemes outperform the traditional dimming schemes, which is also verified by simulation results. Thus, the proposed schemes are shown to have a great potential to be applied in practical MU-MIMO-OFDM VLC systems

    A novel OFDM format and a machine learning based dimming control for lifi

    Get PDF
    This paper proposes a new hybrid orthogonal frequency division multiplexing (OFDM) form termed as DC‐biased pulse amplitude modulated optical OFDM (DPO‐OFDM) by combining the ideas of the existing DC‐biased optical OFDM (DCO‐OFDM) and pulse amplitude modulated discrete multitone (PAM‐DMT). The analysis indicates that the required DC‐bias for DPO‐OFDM-based light fidelity (LiFi) depends on the dimming level and the components of the DPO‐OFDM. The bit error rate (BER) performance and dimming flexibility of the DPO‐OFDM and existing OFDM schemes are evaluated using MATLAB tools. The results show that the proposed DPO‐OFDM is power efficient and has a wide dimming range. Furthermore, a switching algorithm is introduced for LiFi, where the individual components of the hybrid OFDM are switched according to a target dimming level. Next, machine learning algorithms are used for the first time to find the appropriate proportions of the hybrid OFDM components. It is shown that polynomial regression of degree 4 can reliably predict the constellation size of the DCO‐OFDM component of DPO‐OFDM for a given constellation size of PAM‐DMT. With the component switching and the machine learning algorithms, DPO‐OFDM‐based LiFi is power efficient at a wide dimming range. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    A two phase framework for visible light-based positioning in an indoor environment: performance, latency, and illumination

    Full text link
    Recently with the advancement of solid state lighting and the application thereof to Visible Light Communications (VLC), the concept of Visible Light Positioning (VLP) has been targeted as a very attractive indoor positioning system (IPS) due to its ubiquity, directionality, spatial reuse, and relatively high modulation bandwidth. IPSs, in general, have 4 major components (1) a modulation, (2) a multiple access scheme, (3) a channel measurement, and (4) a positioning algorithm. A number of VLP approaches have been proposed in the literature and primarily focus on a fixed combination of these elements and moreover evaluate the quality of the contribution often by accuracy or precision alone. In this dissertation, we provide a novel two-phase indoor positioning algorithmic framework that is able to increase robustness when subject to insufficient anchor luminaries and also incorporate any combination of the four major IPS components. The first phase provides robust and timely albeit less accurate positioning proximity estimates without requiring more than a single luminary anchor using time division access to On Off Keying (OOK) modulated signals while the second phase provides a more accurate, conventional, positioning estimate approach using a novel geometric constrained triangulation algorithm based on angle of arrival (AoA) measurements. However, this approach is still an application of a specific combination of IPS components. To achieve a broader impact, the framework is employed on a collection of IPS component combinations ranging from (1) pulsed modulations to multicarrier modulations, (2) time, frequency, and code division multiple access, (3) received signal strength (RSS), time of flight (ToF), and AoA, as well as (4) trilateration and triangulation positioning algorithms. Results illustrate full room positioning coverage ranging with median accuracies ranging from 3.09 cm to 12.07 cm at 50% duty cycle illumination levels. The framework further allows for duty cycle variation to include dimming modulations and results range from 3.62 cm to 13.15 cm at 20% duty cycle while 2.06 cm to 8.44 cm at a 78% duty cycle. Testbed results reinforce this frameworks applicability. Lastly, a novel latency constrained optimization algorithm can be overlaid on the two phase framework to decide when to simply use the coarse estimate or when to expend more computational resources on a potentially more accurate fine estimate. The creation of the two phase framework enables robust, illumination, latency sensitive positioning with the ability to be applied within a vast array of system deployment constraints

    Interference Suppression in Massive MIMO VLC Systems

    Get PDF
    The focus of this dissertation is on the development and evaluation of methods and principles to mitigate interference in multiuser visible light communication (VLC) systems using several transmitters. All components of such a massive multiple-input multiple-output (MIMO) system are considered and transformed into a communication system model, while also paying particular attention to the hardware requirements of different modulation schemes. By analyzing all steps in the communication process, the inter-channel interference between users is identified as the most critical aspect. Several methods of suppressing this kind of interference, i.e. to split the MIMO channel into parallel single channels, are discussed, and a novel active LCD-based interference suppression principle at the receiver side is introduced as main aspect of this work. This technique enables a dynamic adaption of the physical channel: compared to solely software-based or static approaches, the LCD interference suppression filter achieves adaptive channel separation without altering the characteristics of the transmitter lights. This is especially advantageous in dual-use scenarios with illumination requirements. Additionally, external interferers, like natural light or transmitter light sources of neighboring cells in a multicell setting, can also be suppressed without requiring any control over them. Each user's LCD filter is placed in front of the corresponding photodetector and configured in such a way that only light from desired transmitters can reach the detector by setting only the appropriate pixels to transparent, while light from unwanted transmitters remains blocked. The effectiveness of this method is tested and benchmarked against zero-forcing (ZF) precoding in different scenarios and applications by numerical simulations and also verified experimentally in a large MIMO VLC testbed created specifically for this purpose
    corecore