5,402 research outputs found

    Integrating expert-based objectivist and nonexpert-based subjectivist paradigms in landscape assessment

    Get PDF
    This thesis explores the integration of objective and subjective measures of landscape aesthetics, particularly focusing on crowdsourced geo-information. It addresses the increasing importance of considering public perceptions in national landscape governance, in line with the European Landscape Convention's emphasis on public involvement. Despite this, national landscape assessments often remain expert-centric and top-down, facing challenges in resource constraints and limited public engagement. The thesis leverages Web 2.0 technologies and crowdsourced geographic information, examining correlations between expert-based metrics of landscape quality and public perceptions. The Scenic-Or-Not initiative for Great Britain, GIS-based Wildness spatial layers, and LANDMAP dataset for Wales serve as key datasets for analysis. The research investigates the relationships between objective measures of landscape wildness quality and subjective measures of aesthetics. Multiscale geographically weighted regression (MGWR) reveals significant correlations, with different wildness components exhibiting varying degrees of association. The study suggests the feasibility of incorporating wildness and scenicness measures into formal landscape aesthetic assessments. Comparing expert and public perceptions, the research identifies preferences for water-related landforms and variations in upland and lowland typologies. The study emphasizes the agreement between experts and non-experts on extreme scenic perceptions but notes discrepancies in mid-spectrum landscapes. To overcome limitations in systematic landscape evaluations, an integrative approach is proposed. Utilizing XGBoost models, the research predicts spatial patterns of landscape aesthetics across Great Britain, based on the Scenic-Or-Not initiatives, Wildness spatial layers, and LANDMAP data. The models achieve comparable accuracy to traditional statistical models, offering insights for Landscape Character Assessment practices and policy decisions. While acknowledging data limitations and biases in crowdsourcing, the thesis discusses the necessity of an aggregation strategy to manage computational challenges. Methodological considerations include addressing the modifiable areal unit problem (MAUP) associated with aggregating point-based observations. The thesis comprises three studies published or submitted for publication, each contributing to the understanding of the relationship between objective and subjective measures of landscape aesthetics. The concluding chapter discusses the limitations of data and methods, providing a comprehensive overview of the research

    Mobile Device Background Sensors: Authentication vs Privacy

    Get PDF
    The increasing number of mobile devices in recent years has caused the collection of a large amount of personal information that needs to be protected. To this aim, behavioural biometrics has become very popular. But, what is the discriminative power of mobile behavioural biometrics in real scenarios? With the success of Deep Learning (DL), architectures based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM), have shown improvements compared to traditional machine learning methods. However, these DL architectures still have limitations that need to be addressed. In response, new DL architectures like Transformers have emerged. The question is, can these new Transformers outperform previous biometric approaches? To answers to these questions, this thesis focuses on behavioural biometric authentication with data acquired from mobile background sensors (i.e., accelerometers and gyroscopes). In addition, to the best of our knowledge, this is the first thesis that explores and proposes novel behavioural biometric systems based on Transformers, achieving state-of-the-art results in gait, swipe, and keystroke biometrics. The adoption of biometrics requires a balance between security and privacy. Biometric modalities provide a unique and inherently personal approach for authentication. Nevertheless, biometrics also give rise to concerns regarding the invasion of personal privacy. According to the General Data Protection Regulation (GDPR) introduced by the European Union, personal data such as biometric data are sensitive and must be used and protected properly. This thesis analyses the impact of sensitive data in the performance of biometric systems and proposes a novel unsupervised privacy-preserving approach. The research conducted in this thesis makes significant contributions, including: i) a comprehensive review of the privacy vulnerabilities of mobile device sensors, covering metrics for quantifying privacy in relation to sensitive data, along with protection methods for safeguarding sensitive information; ii) an analysis of authentication systems for behavioural biometrics on mobile devices (i.e., gait, swipe, and keystroke), being the first thesis that explores the potential of Transformers for behavioural biometrics, introducing novel architectures that outperform the state of the art; and iii) a novel privacy-preserving approach for mobile biometric gait verification using unsupervised learning techniques, ensuring the protection of sensitive data during the verification process

    Flood dynamics derived from video remote sensing

    Get PDF
    Flooding is by far the most pervasive natural hazard, with the human impacts of floods expected to worsen in the coming decades due to climate change. Hydraulic models are a key tool for understanding flood dynamics and play a pivotal role in unravelling the processes that occur during a flood event, including inundation flow patterns and velocities. In the realm of river basin dynamics, video remote sensing is emerging as a transformative tool that can offer insights into flow dynamics and thus, together with other remotely sensed data, has the potential to be deployed to estimate discharge. Moreover, the integration of video remote sensing data with hydraulic models offers a pivotal opportunity to enhance the predictive capacity of these models. Hydraulic models are traditionally built with accurate terrain, flow and bathymetric data and are often calibrated and validated using observed data to obtain meaningful and actionable model predictions. Data for accurately calibrating and validating hydraulic models are not always available, leaving the assessment of the predictive capabilities of some models deployed in flood risk management in question. Recent advances in remote sensing have heralded the availability of vast video datasets of high resolution. The parallel evolution of computing capabilities, coupled with advancements in artificial intelligence are enabling the processing of data at unprecedented scales and complexities, allowing us to glean meaningful insights into datasets that can be integrated with hydraulic models. The aims of the research presented in this thesis were twofold. The first aim was to evaluate and explore the potential applications of video from air- and space-borne platforms to comprehensively calibrate and validate two-dimensional hydraulic models. The second aim was to estimate river discharge using satellite video combined with high resolution topographic data. In the first of three empirical chapters, non-intrusive image velocimetry techniques were employed to estimate river surface velocities in a rural catchment. For the first time, a 2D hydraulicvmodel was fully calibrated and validated using velocities derived from Unpiloted Aerial Vehicle (UAV) image velocimetry approaches. This highlighted the value of these data in mitigating the limitations associated with traditional data sources used in parameterizing two-dimensional hydraulic models. This finding inspired the subsequent chapter where river surface velocities, derived using Large Scale Particle Image Velocimetry (LSPIV), and flood extents, derived using deep neural network-based segmentation, were extracted from satellite video and used to rigorously assess the skill of a two-dimensional hydraulic model. Harnessing the ability of deep neural networks to learn complex features and deliver accurate and contextually informed flood segmentation, the potential value of satellite video for validating two dimensional hydraulic model simulations is exhibited. In the final empirical chapter, the convergence of satellite video imagery and high-resolution topographical data bridges the gap between visual observations and quantitative measurements by enabling the direct extraction of velocities from video imagery, which is used to estimate river discharge. Overall, this thesis demonstrates the significant potential of emerging video-based remote sensing datasets and offers approaches for integrating these data into hydraulic modelling and discharge estimation practice. The incorporation of LSPIV techniques into flood modelling workflows signifies a methodological progression, especially in areas lacking robust data collection infrastructure. Satellite video remote sensing heralds a major step forward in our ability to observe river dynamics in real time, with potentially significant implications in the domain of flood modelling science

    INTEGRATED COMPUTER-AIDED DESIGN, EXPERIMENTATION, AND OPTIMIZATION APPROACH FOR PEROVSKITES AND PETROLEUM PACKAGING PROCESSES

    Get PDF
    According to the World Economic Forum report, the U.S. currently has an energy efficiency of just 30%, thus illustrating the potential scope and need for efficiency enhancement and waste minimization. In the U.S. energy sector, petroleum and solar energy are the two key pillars that have the potential to create research opportunities for transition to a cleaner, greener, and sustainable future. In this research endeavor, the focus is on two pivotal areas: (i) Computer-aided perovskite solar cell synthesis; and (ii) Optimization of flow processes through multiproduct petroleum pipelines. In the area of perovskite synthesis, the emphasis is on the enhancement of structural stability, lower costs, and sustainability. Utilizing modeling and optimization methods for computer-aided molecular design (CAMD), efficient, sustainable, less toxic, and economically viable alternatives to conventional lead-based perovskites are obtained. In the second area of optimization of flow processes through multiproduct petroleum pipelines, an actual industrial-scale operation for packaging multiple lube-oil blends is studied. Through an integrated approach of experimental characterization, process design, procedural improvements, testing protocols, control mechanisms, mathematical modeling, and optimization, the limitations of traditional packaging operations are identified, and innovative operational paradigms and strategies are developed by incorporating methods from process systems engineering and data-driven approaches

    Combined Nutrition and Exercise Interventions in Community Groups

    Get PDF
    Diet and physical activity are two key modifiable lifestyle factors that influence health across the lifespan (prevention and management of chronic diseases and reduction of the risk of premature death through several biological mechanisms). Community-based interventions contribute to public health, as they have the potential to reach high population-level impact, through the focus on groups that share a common culture or identity in their natural living environment. While the health benefits of a balanced diet and regular physical activity are commonly studied separately, interventions that combine these two lifestyle factors have the potential to induce greater benefits in community groups rather than strategies focusing only on one or the other. Thus, this Special Issue entitled “Combined Nutrition and Exercise Interventions in Community Groups” is comprised of manuscripts that highlight this combined approach (balanced diet and regular physical activity) in community settings. The contributors to this Special Issue are well-recognized professionals in complementary fields such as education, public health, nutrition, and exercise. This Special Issue highlights the latest research regarding combined nutrition and exercise interventions among different community groups and includes research articles developed through five continents (Africa, Asia, America, Europe and Oceania), as well as reviews and systematic reviews

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Revisiting the capitalization of public transport accessibility into residential land value: an empirical analysis drawing on Open Science

    Get PDF
    Background: The delivery and effective operation of public transport is fundamental for a for a transition to low-carbon emission transport systems’. However, many cities face budgetary challenges in providing and operating this type of infrastructure. Land value capture (LVC) instruments, aimed at recovering all or part of the land value uplifts triggered by actions other than the landowner, can alleviate some of this pressure. A key element of LVC lies in the increment in land value associated with a particular public action. Urban economic theory supports this idea and considers accessibility to be a core element for determining residential land value. Although the empirical literature assessing the relationship between land value increments and public transport infrastructure is vast, it often assumes homogeneous benefits and, therefore, overlooks relevant elements of accessibility. Advancements in the accessibility concept in the context of Open Science can ease the relaxation of such assumptions. Methods: This thesis draws on the case of Greater Mexico City between 2009 and 2019. It focuses on the effects of the main public transport network (MPTN) which is organised in seven temporal stages according to its expansion phases. The analysis incorporates location based accessibility measures to employment opportunities in order to assess the benefits of public transport infrastructure. It does so by making extensive use of the open-source software OpenTripPlanner for public transport route modelling (≈ 2.1 billion origin-destination routes). Potential capitalizations are assessed according to the hedonic framework. The property value data includes individual administrative mortgage records collected by the Federal Mortgage Society (≈ 800,000). The hedonic function is estimated using a variety of approaches, i.e. linear models, nonlinear models, multilevel models, and spatial multilevel models. These are estimated by the maximum likelihood and Bayesian methods. The study also examines possible spatial aggregation bias using alternative spatial aggregation schemes according to the modifiable areal unit problem (MAUP) literature. Results: The accessibility models across the various temporal stages evidence the spatial heterogeneity shaped by the MPTN in combination with land use and the individual perception of residents. This highlights the need to transition from measures that focus on the characteristics of transport infrastructure to comprehensive accessibility measures which reflect such heterogeneity. The estimated hedonic function suggests a robust, positive, and significant relationship between MPTN accessibility and residential land value in all the modelling frameworks in the presence of a variety of controls. The residential land value increases between 3.6% and 5.7% for one additional standard deviation in MPTN accessibility to employment in the final set of models. The total willingness to pay (TWTP) is considerable, ranging from 0.7 to 1.5 times the equivalent of the capital costs of the bus rapid transit Line-7 of the MetrobĂșs system. A sensitivity analysis shows that the hedonic model estimation is sensitive to the MAUP. In addition, the use of a post code zoning scheme produces the closest results compared to the smallest spatial analytical scheme (0.5 km hexagonal grid). Conclusion: The present thesis advances the discussion on the capitalization of public transport on residential land value by adopting recent contributions from the Open Science framework. Empirically, it fills a knowledge gap given the lack of literature around this topic in this area of study. In terms of policy, the findings support LVC as a mechanism of considerable potential. Regarding fee-based LVC instruments, there are fairness issues in relation to the distribution of charges or exactions to households that could be addressed using location based measures. Furthermore, the approach developed for this analysis serves as valuable guidance for identifying sites with large potential for the implementation of development based instruments, for instance land readjustments or the sale/lease of additional development rights

    Novel Neural Network Applications to Mode Choice in Transportation: Estimating Value of Travel Time and Modelling Psycho-Attitudinal Factors

    Get PDF
    Whenever researchers wish to study the behaviour of individuals choosing among a set of alternatives, they usually rely on models based on the random utility theory, which postulates that the single individuals modify their behaviour so that they can maximise of their utility. These models, often identified as discrete choice models (DCMs), usually require the definition of the utilities for each alternative, by first identifying the variables influencing the decisions. Traditionally, DCMs focused on observable variables and treated users as optimizing tools with predetermined needs. However, such an approach is in contrast with the results from studies in social sciences which show that choice behaviour can be influenced by psychological factors such as attitudes and preferences. Recently there have been formulations of DCMs which include latent constructs for capturing the impact of subjective factors. These are called hybrid choice models or integrated choice and latent variable models (ICLV). However, DCMs are not exempt from issues, like, the fact that researchers have to choose the variables to include and their relations to define the utilities. This is probably one of the reasons which has recently lead to an influx of numerous studies using machine learning (ML) methods to study mode choice, in which researchers tried to find alternative methods to analyse travellers’ choice behaviour. A ML algorithm is any generic method that uses the data itself to understand and build a model, improving its performance the more it is allowed to learn. This means they do not require any a priori input or hypotheses on the structure and nature of the relationships between the several variables used as its inputs. ML models are usually considered black-box methods, but whenever researchers felt the need for interpretability of ML results, they tried to find alternative ways to use ML methods, like building them by using some a priori knowledge to induce specific constrains. Some researchers also transformed the outputs of ML algorithms so that they could be interpreted from an economic point of view, or built hybrid ML-DCM models. The object of this thesis is that of investigating the benefits and the disadvantages deriving from adopting either DCMs or ML methods to study the phenomenon of mode choice in transportation. The strongest feature of DCMs is the fact that they produce very precise and descriptive results, allowing for a thorough interpretation of their outputs. On the other hand, ML models offer a substantial benefit by being truly data-driven methods and thus learning most relations from the data itself. As a first contribution, we tested an alternative method for calculating the value of travel time (VTT) through the results of ML algorithms. VTT is a very informative parameter to consider, since the time consumed by individuals whenever they need to travel normally represents an undesirable factor, thus they are usually willing to exchange their money to reduce travel times. The method proposed is independent from the mode-choice functions, so it can be applied to econometric models and ML methods equally, if they allow the estimation of individual level probabilities. Another contribution of this thesis is a neural network (NN) for the estimation of choice models with latent variables as an alternative to DCMs. This issue arose from wanting to include in ML models not only level of service variables of the alternatives, and socio-economic attributes of the individuals, but also psycho-attitudinal indicators, to better describe the influence of psychological factors on choice behaviour. The results were estimated by using two different datasets. Since NN results are dependent on the values of their hyper-parameters and on their initialization, several NNs were estimated by using different hyper-parameters to find the optimal values, which were used to verify the stability of the results with different initializations

    Design of new algorithms for gene network reconstruction applied to in silico modeling of biomedical data

    Get PDF
    Programa de Doctorado en BiotecnologĂ­a, IngenierĂ­a y TecnologĂ­a QuĂ­micaLĂ­nea de InvestigaciĂłn: IngenierĂ­a, Ciencia de Datos y BioinformĂĄticaClave Programa: DBICĂłdigo LĂ­nea: 111The root causes of disease are still poorly understood. The success of current therapies is limited because persistent diseases are frequently treated based on their symptoms rather than the underlying cause of the disease. Therefore, biomedical research is experiencing a technology-driven shift to data-driven holistic approaches to better characterize the molecular mechanisms causing disease. Using omics data as an input, emerging disciplines like network biology attempt to model the relationships between biomolecules. To this effect, gene co- expression networks arise as a promising tool for deciphering the relationships between genes in large transcriptomic datasets. However, because of their low specificity and high false positive rate, they demonstrate a limited capacity to retrieve the disrupted mechanisms that lead to disease onset, progression, and maintenance. Within the context of statistical modeling, we dove deeper into the reconstruction of gene co-expression networks with the specific goal of discovering disease-specific features directly from expression data. Using ensemble techniques, which combine the results of various metrics, we were able to more precisely capture biologically significant relationships between genes. We were able to find de novo potential disease-specific features with the help of prior biological knowledge and the development of new network inference techniques. Through our different approaches, we analyzed large gene sets across multiple samples and used gene expression as a surrogate marker for the inherent biological processes, reconstructing robust gene co-expression networks that are simple to explore. By mining disease-specific gene co-expression networks we come up with a useful framework for identifying new omics-phenotype associations from conditional expression datasets.In this sense, understanding diseases from the perspective of biological network perturbations will improve personalized medicine, impacting rational biomarker discovery, patient stratification and drug design, and ultimately leading to more targeted therapies.Universidad Pablo de Olavide de Sevilla. Departamento de Deporte e InformĂĄtic
    • 

    corecore