9,490 research outputs found

    A Dynamical Consideration on Earthquake Damages of Bridge Piers : First Report

    Get PDF
    As was also noted from the results of the Fukui Earthquake of June 1948, it is now quite evident that the earthquake damage of the bridge substructure decisively affects the damage of the whole bridge, directly or indirectly, with almost no exception. In view of this fact, it is attempted in this paper to make a dynamical study from both theoretical and experimental points of view on the mechanism of earthquake damages of the bridge substructure and thereby contribute to the earthquake-proof design and construction of bridge piers

    GMC Collisions as Triggers of Star Formation. V. Observational Signatures

    Full text link
    We present calculations of molecular, atomic and ionic line emission from simulations of giant molecular cloud (GMC) collisions. We post-process snapshots of the magneto-hydrodynamical simulations presented in an earlier paper in this series by Wu et al. (2017) of colliding and non-colliding GMCs. Using photodissociation region (PDR) chemistry and radiative transfer we calculate the level populations and emission properties of 12^{12}CO J=10J=1-0, [CI] 3P13P0^3{\rm P}_1\rightarrow{^3{\rm P}}_0 at 609μ609\,\mum, [CII] 158μ158\,\mum and [OI] 3P13P0^3{\rm P}_1\rightarrow{^3{\rm P}}_0 transition at 63μ63\,\mum. From integrated intensity emission maps and position-velocity diagrams, we find that fine-structure lines, particularly the [CII] 158μ158\,\mum, can be used as a diagnostic tracer for cloud-cloud collision activity. These results hold even in more evolved systems in which the collision signature in molecular lines has been diminished.Comment: 10 pages, 7 figures, accepted for publication in ApJ, comments welcom

    High-mass star formation in Orion triggered by cloud-cloud collision II, Two merging molecular clouds in NGC2024

    Get PDF
    We analyzed the NANTEN2 13CO (J=2-1 and 1-0) datasets in NGC 2024. We found that the cloud consists of two velocity components, whereas the cloud shows mostly single-peaked CO profiles. The two components are physically connected to the HII region as evidenced by their close correlation with the dark lanes and the emission nebulosity. The two components show complementary distribution with a displacement of 0.4 pc. Such complementary distribution is typical to colliding clouds discovered in regions of high-mass star formation. We hypothesize that cloud-cloud collision between the two components triggered the formation of the late O stars and early B stars localized within 0.3 pc of the cloud peak. The collision timescale is estimated to be ~ 10^5 yrs from a ratio of the displacement and the relative velocity 3-4 km s-1 corrected for probable projection. The high column density of the colliding cloud 1023 cm-2 is similar to those in the other massive star clusters in RCW 38, Westerlund 2, NGC 3603, and M42, which are likely formed under trigger by cloud-cloud collision. The present results provide an additional piece of evidence favorable to high-mass star formation by a major cloud-cloud collision in Orion.Comment: 24 pages, 10 figures, submitted for publication in PASJ (cloud-cloud collision special issue
    corecore