63,685 research outputs found
Spin network setting of topological quantum computation
The spin network simulator model represents a bridge between (generalised)
circuit schemes for standard quantum computation and approaches based on
notions from Topological Quantum Field Theories (TQFTs). The key tool is
provided by the fiber space structure underlying the model which exhibits
combinatorial properties closely related to SU(2) state sum models, widely
employed in discretizing TQFTs and quantum gravity in low spacetime dimensions.Comment: Proc. "Foundations of Quantum Information", Camerino (Italy), 16-19
April 2004, to be published in Int. J. of Quantum Informatio
Spin networks, quantum automata and link invariants
The spin network simulator model represents a bridge between (generalized)
circuit schemes for standard quantum computation and approaches based on
notions from Topological Quantum Field Theories (TQFT). More precisely, when
working with purely discrete unitary gates, the simulator is naturally modelled
as families of quantum automata which in turn represent discrete versions of
topological quantum computation models. Such a quantum combinatorial scheme,
which essentially encodes SU(2) Racah--Wigner algebra and its braided
counterpart, is particularly suitable to address problems in topology and group
theory and we discuss here a finite states--quantum automaton able to accept
the language of braid group in view of applications to the problem of
estimating link polynomials in Chern--Simons field theory.Comment: LateX,19 pages; to appear in the Proc. of "Constrained Dynamics and
Quantum Gravity (QG05), Cala Gonone (Italy) September 12-16 200
LISACode : A scientific simulator of LISA
A new LISA simulator (LISACode) is presented. Its ambition is to achieve a
new degree of sophistication allowing to map, as closely as possible, the
impact of the different sub-systems on the measurements. LISACode is not a
detailed simulator at the engineering level but rather a tool whose purpose is
to bridge the gap between the basic principles of LISA and a future,
sophisticated end-to-end simulator. This is achieved by introducing, in a
realistic manner, most of the ingredients that will influence LISA's
sensitivity as well as the application of TDI combinations. Many user-defined
parameters allow the code to study different configurations of LISA thus
helping to finalize the definition of the detector. Another important use of
LISACode is in generating time series for data analysis developments
Probability distribution functions
This technical report describes the PDFs which have been implemented to model the behaviours of certain parameters
of the Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator (RHW2PNetSim) and Bridge-Based
Hybrid Wired/Wireless PROFIBUS Network Simulator (BHW2PNetSim)
Design and development of a novel Invasive Blood Pressure simulator for patient's monitor testing
This paper presents a newly-designed and realized Invasive Blood Pressure (IBP) device for the simulation on patient’s monitors. This device shows improvements and presents extended features with respect to a first prototype presented by the authors and similar systems available in the state-of-the-art. A peculiarity of the presented device is that all implemented features can be customized from the developer and from the point of view of the end user. The realized device has been tested, and its performances in terms of accuracy and of the back-loop measurement of the output for the blood pressure regulation utilization have been described. In particular, an accuracy of ±1 mmHg at 25 °C, on a range from −30 to 300 mmHg, was evaluated under different test conditions. The designed device is an ideal tool for testing IBP modules, for zero setting, and for calibrations. The implemented extended features, like the generation of custom waveforms and the Universal Serial Bus (USB) connectivity, allow use of this device in a wide range of applications, from research to equipment maintenance in clinical environments to educational purposes. Moreover, the presented device represents an innovation, both in terms of technology and methodologies: It allows quick and efficient tests to verify the proper functioning of IBP module of patients’ monitors. With this innovative device, tests can be performed directly in the field and faster procedures can be implemented by the clinical maintenance personnel. This device is an open source project and all materials, hardware, and software are fully available for interested developers or researchers.Web of Science201art. no. 25
An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks
Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful
energy awareness is essential when working with these devices.
Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features.
This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols.
The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and
has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference
publications in IEEE Explore and one workshop paper
Simulation-based model course to demonstrate seafarers' competence for deck officers' discipline
Postprint (published version
- …
