178 research outputs found

    Breast Cancer: Modelling and Detection

    Get PDF
    This paper reviews a number of the mathematical models used in cancer modelling and then chooses a specific cancer, breast carcinoma, to illustrate how the modelling can be used in aiding detection. We then discuss mathematical models that underpin mammographic image analysis, which complements models of tumour growth and facilitates diagnosis and treatment of cancer. Mammographic images are notoriously difficult to interpret, and we give an overview of the primary image enhancement technologies that have been introduced, before focusing on a more detailed description of some of our own recent work on the use of physics-based modelling in mammography. This theoretical approach to image analysis yields a wealth of information that could be incorporated into the mathematical models, and we conclude by describing how current mathematical models might be enhanced by use of this information, and how these models in turn will help to meet some of the major challenges in cancer detection

    Microcalcification and Macrocalcification Detection in Mammograms Based on GLCM and ODCM Texture Features Using SVM Classifier

    Full text link
    Breast cancer is a common cancer in women and the second leading cause of cancer deaths worldwide. Photographing the changes in internal breast structure due to formation of masses and microcalcification for detection of Breast Cancer is known as Mammogram, which are low dose x-ray images. These images play a very significant role in early detection of breast cancer. Usually in pattern recognition texture analysis is used for classification based on content of image or in image segmentation based on variation of intensities of gray scale levels or colours. Similarly texture analysis can also be used to identify masses and microcalcification in mammograms. However Grey Level Co-occurrence Matrices (GLCM) technique introduced by Haralick was initially used in study of remote sensing images. Radiologists f i n d i t d i f f i c u l t to identify the mass in a mammogram, since the masses are surrounded by pectoral muscle and blood vessels. In breast cancer screening, radiologists usually miss approximately 10% - 30% of tumors because of the ambiguous margins of tumors resulting from long-time diagnosis. Computer-aided detection system is developed to aid radiologists in detecting ma mammographic masses which indicate the presence of breast cancer. In this paper the input image is pre-processed initially that includes noise removal, pectoral muscle removal, thresholding, contrast enhancement and suspicious mass is detected and the features are extracted based on the mass detected. A feature extraction method based on grey level co- occurrence matrix and optical density features called GLCM -OD features is used to describe local texture characteristics and the discrete photometric distribution of each ROI. Finally, a support vector machine is used to classify abnormal regions by selecting the individual performance of each feature. The results prove that the proposed system achieves an excellent detection performance using SVM classifier

    Detection of Microcalcification Using Mammograms

    Get PDF
    Mammography is one of the most common and useful techniques used for early detection of the breast cancer. It is the low-dose x-ray examination performed to patient to detect the primary mass when it is still small and confined to the breast. The present of microcalcification is a highly indication of the cancerous tissues. Microcalcification is a tiny specks of calcium deposited in the breast. The problem encountered in detecting the microcalcification by using this method is the limitation of the mammogram image (x-ray) to detect the microcalcification due to mainly to their small size, low contrast, and the similarity of their radiographic appearance to dense tissue. Statistic had shown that approximately 10%-30% of breast cancers retrospectively visible on the mammograms were missed ormisinterpreted due tohuman or technical factors [1]. This project focuses on the enhancement of the mammograms image by applying the image processing techniques to assist doctors in detecting the breast cancer disease. The aim is to provide a low-cost technology in detecting the breast cancer at the early stage. This project develops the program using MATLAB and Borland C++ to enhance the digitized mammograms image by using the image processing technique. The mammogram is first digitized and processed by the program developed to detect the microcalcification deposited in the breast. The morphological operation was a simple and suitablemethod in identifying the microcalcification. The top-hat algorithm method that is a morphological operation was developed using MATLAB and successfully obtained the output image that shows the candidate microcalcification. The top hat method consists of four stages which are digitization of mammograms, image enhancement, image segmentation and feature extraction. Various image processing techniques were applied including filters, histogram generation, thresholding and edge detection. The top hat method was applied to mammograms samples of eight patients and able to detect the microcalcification. The results obtained were defined into three categories, below expectation, meet expectation and above expectation. In conclusion, the project had met an acceptable degree ofaccuracy level

    Detecting microcalcification clusters in digital mammograms: Study for inclusion into computer aided diagnostic prompting system

    Full text link
    Among signs of breast cancer encountered in digital mammograms radiologists point to microcalcification clusters (MCCs). Their detection is a challenging problem from both medical and image processing point of views. This work presents two concurrent methods for MCC detection, and studies their possible inclusion to a computer aided diagnostic prompting system. One considers Wavelet Domain Hidden Markov Tree (WHMT) for modeling microcalcification edges. The model is used for differentiation between MC and non-MC edges based on the weighted maximum likelihood (WML) values. The classification of objects is carried out using spatial filters. The second method employs SUSAN edge detector in the spatial domain for mammogram segmentation. Classification of objects as calcifications is carried out using another set of spatial filters and Feedforward Neural Network (NN). A same distance filter is employed in both methods to find true clusters. The analysis of two methods is performed on 54 image regions from the mammograms selected randomly from DDSM database, including benign and cancerous cases as well as cases which can be classified as hard cases from both radiologists and the computer perspectives. WHMT/WML is able to detect 98.15% true positive (TP) MCCs under 1.85% of false positives (FP), whereas the SUSAN/NN method achieves 94.44% of TP at the cost of 1.85% for FP. The comparison of these two methods suggests WHMT/WML for the computer aided diagnostic prompting. It also certifies the low false positive rates for both methods, meaning less biopsy tests per patient

    Fractal modeling and segmentation for the enhancement of microcalcifications in digital mammograms

    Full text link

    Computer-aided detection and diagnosis of breast cancer in 2D and 3D medical imaging through multifractal analysis

    Get PDF
    This Thesis describes the research work performed in the scope of a doctoral research program and presents its conclusions and contributions. The research activities were carried on in the industry with Siemens S.A. Healthcare Sector, in integration with a research team. Siemens S.A. Healthcare Sector is one of the world biggest suppliers of products, services and complete solutions in the medical sector. The company offers a wide selection of diagnostic and therapeutic equipment and information systems. Siemens products for medical imaging and in vivo diagnostics include: ultrasound, computer tomography, mammography, digital breast tomosynthesis, magnetic resonance, equipment to angiography and coronary angiography, nuclear imaging, and many others. Siemens has a vast experience in Healthcare and at the beginning of this project it was strategically interested in solutions to improve the detection of Breast Cancer, to increase its competitiveness in the sector. The company owns several patents related with self-similarity analysis, which formed the background of this Thesis. Furthermore, Siemens intended to explore commercially the computer- aided automatic detection and diagnosis eld for portfolio integration. Therefore, with the high knowledge acquired by University of Beira Interior in this area together with this Thesis, will allow Siemens to apply the most recent scienti c progress in the detection of the breast cancer, and it is foreseeable that together we can develop a new technology with high potential. The project resulted in the submission of two invention disclosures for evaluation in Siemens A.G., two articles published in peer-reviewed journals indexed in ISI Science Citation Index, two other articles submitted in peer-reviewed journals, and several international conference papers. This work on computer-aided-diagnosis in breast led to innovative software and novel processes of research and development, for which the project received the Siemens Innovation Award in 2012. It was very rewarding to carry on such technological and innovative project in a socially sensitive area as Breast Cancer.No cancro da mama a deteção precoce e o diagnóstico correto são de extrema importância na prescrição terapêutica e caz e e ciente, que potencie o aumento da taxa de sobrevivência à doença. A teoria multifractal foi inicialmente introduzida no contexto da análise de sinal e a sua utilidade foi demonstrada na descrição de comportamentos siológicos de bio-sinais e até na deteção e predição de patologias. Nesta Tese, três métodos multifractais foram estendidos para imagens bi-dimensionais (2D) e comparados na deteção de microcalci cações em mamogramas. Um destes métodos foi também adaptado para a classi cação de massas da mama, em cortes transversais 2D obtidos por ressonância magnética (RM) de mama, em grupos de massas provavelmente benignas e com suspeição de malignidade. Um novo método de análise multifractal usando a lacunaridade tri-dimensional (3D) foi proposto para classi cação de massas da mama em imagens volumétricas 3D de RM de mama. A análise multifractal revelou diferenças na complexidade subjacente às localizações das microcalci cações em relação aos tecidos normais, permitindo uma boa exatidão da sua deteção em mamogramas. Adicionalmente, foram extraídas por análise multifractal características dos tecidos que permitiram identi car os casos tipicamente recomendados para biópsia em imagens 2D de RM de mama. A análise multifractal 3D foi e caz na classi cação de lesões mamárias benignas e malignas em imagens 3D de RM de mama. Este método foi mais exato para esta classi cação do que o método 2D ou o método padrão de análise de contraste cinético tumoral. Em conclusão, a análise multifractal fornece informação útil para deteção auxiliada por computador em mamogra a e diagnóstico auxiliado por computador em imagens 2D e 3D de RM de mama, tendo o potencial de complementar a interpretação dos radiologistas
    corecore