8 research outputs found

    A Bridge between Liquid and Social Welfare in Combinatorial Auctions with Submodular Bidders

    Full text link
    We study incentive compatible mechanisms for Combinatorial Auctions where the bidders have submodular (or XOS) valuations and are budget-constrained. Our objective is to maximize the \emph{liquid welfare}, a notion of efficiency for budget-constrained bidders introduced by Dobzinski and Paes Leme (2014). We show that some of the known truthful mechanisms that best-approximate the social welfare for Combinatorial Auctions with submodular bidders through demand query oracles can be adapted, so that they retain truthfulness and achieve asymptotically the same approximation guarantees for the liquid welfare. More specifically, for the problem of optimizing the liquid welfare in Combinatorial Auctions with submodular bidders, we obtain a universally truthful randomized O(logm)O(\log m)-approximate mechanism, where mm is the number of items, by adapting the mechanism of Krysta and V\"ocking (2012). Additionally, motivated by large market assumptions often used in mechanism design, we introduce a notion of competitive markets and show that in such markets, liquid welfare can be approximated within a constant factor by a randomized universally truthful mechanism. Finally, in the Bayesian setting, we obtain a truthful O(1)O(1)-approximate mechanism for the case where bidder valuations are generated as independent samples from a known distribution, by adapting the results of Feldman, Gravin and Lucier (2014).Comment: AAAI-1

    On Simultaneous Two-player Combinatorial Auctions

    Full text link
    We consider the following communication problem: Alice and Bob each have some valuation functions v1()v_1(\cdot) and v2()v_2(\cdot) over subsets of mm items, and their goal is to partition the items into S,SˉS, \bar{S} in a way that maximizes the welfare, v1(S)+v2(Sˉ)v_1(S) + v_2(\bar{S}). We study both the allocation problem, which asks for a welfare-maximizing partition and the decision problem, which asks whether or not there exists a partition guaranteeing certain welfare, for binary XOS valuations. For interactive protocols with poly(m)poly(m) communication, a tight 3/4-approximation is known for both [Fei06,DS06]. For interactive protocols, the allocation problem is provably harder than the decision problem: any solution to the allocation problem implies a solution to the decision problem with one additional round and logm\log m additional bits of communication via a trivial reduction. Surprisingly, the allocation problem is provably easier for simultaneous protocols. Specifically, we show: 1) There exists a simultaneous, randomized protocol with polynomial communication that selects a partition whose expected welfare is at least 3/43/4 of the optimum. This matches the guarantee of the best interactive, randomized protocol with polynomial communication. 2) For all ε>0\varepsilon > 0, any simultaneous, randomized protocol that decides whether the welfare of the optimal partition is 1\geq 1 or 3/41/108+ε\leq 3/4 - 1/108+\varepsilon correctly with probability >1/2+1/poly(m)> 1/2 + 1/ poly(m) requires exponential communication. This provides a separation between the attainable approximation guarantees via interactive (3/43/4) versus simultaneous (3/41/108\leq 3/4-1/108) protocols with polynomial communication. In other words, this trivial reduction from decision to allocation problems provably requires the extra round of communication

    Separating the Communication Complexity of Truthful and Non-Truthful Combinatorial Auctions

    Full text link
    We provide the first separation in the approximation guarantee achievable by truthful and non-truthful combinatorial auctions with polynomial communication. Specifically, we prove that any truthful mechanism guaranteeing a (341240+ε)(\frac{3}{4}-\frac{1}{240}+\varepsilon)-approximation for two buyers with XOS valuations over mm items requires exp(Ω(ε2m))\exp(\Omega(\varepsilon^2 \cdot m)) communication, whereas a non-truthful algorithm by Dobzinski and Schapira [SODA 2006] and Feige [2009] is already known to achieve a 34\frac{3}{4}-approximation in poly(m)poly(m) communication. We obtain our separation by proving that any {simultaneous} protocol ({not} necessarily truthful) which guarantees a (341240+ε)(\frac{3}{4}-\frac{1}{240}+\varepsilon)-approximation requires communication exp(Ω(ε2m))\exp(\Omega(\varepsilon^2 \cdot m)). The taxation complexity framework of Dobzinski [FOCS 2016] extends this lower bound to all truthful mechanisms (including interactive truthful mechanisms)

    Computational Efficiency Requires Simple Taxation

    Full text link
    We characterize the communication complexity of truthful mechanisms. Our departure point is the well known taxation principle. The taxation principle asserts that every truthful mechanism can be interpreted as follows: every player is presented with a menu that consists of a price for each bundle (the prices depend only on the valuations of the other players). Each player is allocated a bundle that maximizes his profit according to this menu. We define the taxation complexity of a truthful mechanism to be the logarithm of the maximum number of menus that may be presented to a player. Our main finding is that in general the taxation complexity essentially equals the communication complexity. The proof consists of two main steps. First, we prove that for rich enough domains the taxation complexity is at most the communication complexity. We then show that the taxation complexity is much smaller than the communication complexity only in "pathological" cases and provide a formal description of these extreme cases. Next, we study mechanisms that access the valuations via value queries only. In this setting we establish that the menu complexity -- a notion that was already studied in several different contexts -- characterizes the number of value queries that the mechanism makes in exactly the same way that the taxation complexity characterizes the communication complexity. Our approach yields several applications, including strengthening the solution concept with low communication overhead, fast computation of prices, and hardness of approximation by computationally efficient truthful mechanisms
    corecore