353 research outputs found

    Label Embedding by Johnson-Lindenstrauss Matrices

    Full text link
    We present a simple and scalable framework for extreme multiclass classification based on Johnson-Lindenstrauss matrices (JLMs). Using the columns of a JLM to embed the labels, a CC-class classification problem is transformed into a regression problem with \cO(\log C) output dimension. We derive an excess risk bound, revealing a tradeoff between computational efficiency and prediction accuracy, and further show that under the Massart noise condition, the penalty for dimension reduction vanishes. Our approach is easily parallelizable, and experimental results demonstrate its effectiveness and scalability in large-scale applications

    A Survey on Extreme Multi-label Learning

    Full text link
    Multi-label learning has attracted significant attention from both academic and industry field in recent decades. Although existing multi-label learning algorithms achieved good performance in various tasks, they implicitly assume the size of target label space is not huge, which can be restrictive for real-world scenarios. Moreover, it is infeasible to directly adapt them to extremely large label space because of the compute and memory overhead. Therefore, eXtreme Multi-label Learning (XML) is becoming an important task and many effective approaches are proposed. To fully understand XML, we conduct a survey study in this paper. We first clarify a formal definition for XML from the perspective of supervised learning. Then, based on different model architectures and challenges of the problem, we provide a thorough discussion of the advantages and disadvantages of each category of methods. For the benefit of conducting empirical studies, we collect abundant resources regarding XML, including code implementations, and useful tools. Lastly, we propose possible research directions in XML, such as new evaluation metrics, the tail label problem, and weakly supervised XML.Comment: A preliminary versio

    Learning from eXtreme Bandit Feedback

    Full text link
    We study the problem of batch learning from bandit feedback in the setting of extremely large action spaces. Learning from extreme bandit feedback is ubiquitous in recommendation systems, in which billions of decisions are made over sets consisting of millions of choices in a single day, yielding massive observational data. In these large-scale real-world applications, supervised learning frameworks such as eXtreme Multi-label Classification (XMC) are widely used despite the fact that they incur significant biases due to the mismatch between bandit feedback and supervised labels. Such biases can be mitigated by importance sampling techniques, but these techniques suffer from impractical variance when dealing with a large number of actions. In this paper, we introduce a selective importance sampling estimator (sIS) that operates in a significantly more favorable bias-variance regime. The sIS estimator is obtained by performing importance sampling on the conditional expectation of the reward with respect to a small subset of actions for each instance (a form of Rao-Blackwellization). We employ this estimator in a novel algorithmic procedure -- named Policy Optimization for eXtreme Models (POXM) -- for learning from bandit feedback on XMC tasks. In POXM, the selected actions for the sIS estimator are the top-p actions of the logging policy, where p is adjusted from the data and is significantly smaller than the size of the action space. We use a supervised-to-bandit conversion on three XMC datasets to benchmark our POXM method against three competing methods: BanditNet, a previously applied partial matching pruning strategy, and a supervised learning baseline. Whereas BanditNet sometimes improves marginally over the logging policy, our experiments show that POXM systematically and significantly improves over all baselines

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202

    Scalable Label Distribution Learning for Multi-Label Classification

    Full text link
    Multi-label classification (MLC) refers to the problem of tagging a given instance with a set of relevant labels. Most existing MLC methods are based on the assumption that the correlation of two labels in each label pair is symmetric, which is violated in many real-world scenarios. Moreover, most existing methods design learning processes associated with the number of labels, which makes their computational complexity a bottleneck when scaling up to large-scale output space. To tackle these issues, we propose a novel MLC learning method named Scalable Label Distribution Learning (SLDL) for multi-label classification which can describe different labels as distributions in a latent space, where the label correlation is asymmetric and the dimension is independent of the number of labels. Specifically, SLDL first converts labels into continuous distributions within a low-dimensional latent space and leverages the asymmetric metric to establish the correlation between different labels. Then, it learns the mapping from the feature space to the latent space, resulting in the computational complexity is no longer related to the number of labels. Finally, SLDL leverages a nearest-neighbor-based strategy to decode the latent representations and obtain the final predictions. Our extensive experiments illustrate that SLDL can achieve very competitive classification performances with little computational consumption

    GUDN: A novel guide network with label reinforcement strategy for extreme multi-label text classification

    Full text link
    In natural language processing, extreme multi-label text classification is an emerging but essential task. The problem of extreme multi-label text classification (XMTC) is to recall some of the most relevant labels for a text from an extremely large label set. Large-scale pre-trained models have brought a new trend to this problem. Though the large-scale pre-trained models have made significant achievements on this problem, the valuable fine-tuned methods have yet to be studied. Though label semantics have been introduced in XMTC, the vast semantic gap between texts and labels has yet to gain enough attention. This paper builds a new guide network (GUDN) to help fine-tune the pre-trained model to instruct classification later. Furthermore, GUDN uses raw label semantics combined with a helpful label reinforcement strategy to effectively explore the latent space between texts and labels, narrowing the semantic gap, which can further improve predicted accuracy. Experimental results demonstrate that GUDN outperforms state-of-the-art methods on Eurlex-4k and has competitive results on other popular datasets. In an additional experiment, we investigated the input lengths' influence on the Transformer-based model's accuracy. Our source code is released at https://t.hk.uy/aFSH.Comment: 12 pages, 6 figure
    • …
    corecore