32 research outputs found

    On utilizing an enhanced object partitioning scheme to optimize self-organizing lists-on-lists

    Get PDF
    Author's accepted manuscript.This is a post-peer-review, pre-copyedit version of an article published in Evolving Systems. The final authenticated version is available online at: http://dx.doi.org/10.1007/s12530-020-09327-4.acceptedVersio

    Deterministic Chaos in Digital Cryptography

    Get PDF
    This thesis studies the application of deterministic chaos to digital cryptography. Cryptographic systems such as pseudo-random generators (PRNG), block ciphers and hash functions are regarded as a dynamic system (X, j), where X is a state space (Le. message space) and f : X -+ X is an iterated function. In both chaos theory and cryptography, the object of study is a dynamic system that performs an iterative nonlinear transformation of information in an apparently unpredictable but deterministic manner. In terms of chaos theory, the sensitivity to the initial conditions together with the mixing property ensures cryptographic confusion (statistical independence) and diffusion (uniform propagation of plaintext and key randomness into cihertext). This synergetic relationship between the properties of chaotic and cryptographic systems is considered at both the theoretical and practical levels: The theoretical background upon which this relationship is based, includes discussions on chaos, ergodicity, complexity, randomness, unpredictability and entropy. Two approaches to the finite-state implementation of chaotic systems (Le. pseudo-chaos) are considered: (i) floating-point approximation of continuous-state chaos; (ii) binary pseudo-chaos. An overview is given of chaotic systems underpinning cryptographic algorithms along with their strengths and weaknesses. Though all conventional cryposystems are considered binary pseudo-chaos, neither chaos, nor pseudo-chaos are sufficient to guarantee cryptographic strength and security. A dynamic system is said to have an analytical solution Xn = (xo) if any trajectory point Xn can be computed directly from the initial conditions Xo, without performing n iterations. A chaotic system with an analytical solution may have a unpredictable multi-valued map Xn+l = f(xn). Their floating-point approximation is studied in the context of pseudo-random generators. A cryptographic software system E-Larm â„¢ implementing a multistream pseudo-chaotic generator is described. Several pseudo-chaotic systems including the logistic map, sine map, tangent- and logarithm feedback maps, sawteeth and tent maps are evaluated by means of floating point computations. Two types of partitioning are used to extract pseudo-random from the floating-point state variable: (i) combining the last significant bits of the floating-point number (for nonlinear maps); and (ii) threshold partitioning (for piecewise linear maps). Multi-round iterations are produced to decrease the bit dependence and increase non-linearity. Relationships between pseudo-chaotic systems are introduced to avoid short cycles (each system influences periodically the states of other systems used in the encryption session). An evaluation of cryptographic properties of E-Larm is given using graphical plots such as state distributions, phase-space portraits, spectral density Fourier transform, approximated entropy (APEN), cycle length histogram, as well as a variety of statistical tests from the National Institute of Standards and Technology (NIST) suite. Though E-Larm passes all tests recommended by NIST, an approach based on the floating-point approximation of chaos is inefficient in terms of the quality/performance ratio (compared with existing PRNG algorithms). Also no solution is known to control short cycles. In conclusion, the role of chaos theory in cryptography is identified; disadvantages of floating-point pseudo-chaos are emphasized although binary pseudo-chaos is considered useful for cryptographic applications.Durand Technology Limite

    Learning Automata-Based Object Partitioning with Pre-Specified Cardinalities

    Get PDF
    Master's thesis in Information- and communication technology (IKT591)The Object Migrating Automata (OMA) has been used as a powerful AI-based tool to resolve real-life partitioning problems. Apart from its original version, variants and enhancements that invoke the pursuit concept of Learning Automata, and the phenomena of transitivity, have more recently been used to improve its power. The single major handicap that it possesses is the fact that the number of the objects in each partition must be equal. This thesis deals with the task of relaxing this constraint. Thus, in this thesis, we will consider the problem of designing OMA-based schemes when the number of the objects can be unequal, but prespecified. By opening ourselves to this less-constrained version, we encounter a few problems that deal with the implementation of the inter-partition migration of the objects. This thesis considers how these problems can be solved, and in essence, presents the design, implementation and testing of two OMA-based methods and all its variants, that include the pursuit and transitivity phenomena

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Nature-inspired survivability: Prey-inspired survivability countermeasures for cloud computing security challenges

    Get PDF
    As cloud computing environments become complex, adversaries have become highly sophisticated and unpredictable. Moreover, they can easily increase attack power and persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes prey-inspired survivability to address unpredictable security challenges borne out of UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals, applying prey survivability to cloud computing directly is challenging due to contradicting end goals. How to manage evolving survivability goals and requirements under contradicting environmental conditions adds to the challenges. To address these challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving contradiction. First, it develops a 3-step process to facilitate interdomain transfer of concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived solutions. The framework run-time is pushed to the user-space to support evolving survivability design goals. Furthermore, a target-based decision-making technique (TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation results shows that escalating survivability actions improve the vitality of vulnerable and compromised virtual machines (VMs) by 5% and dramatically improve their overall survivability. Hypothesis testing conclusively supports the hypothesis that the escalation mechanisms can be applied to enhance the survivability of cloud computing systems. Numeric analysis of TBDM shows that by considering survivability preferences and attitudes (these directly impacts survivability actions), the TBDM method brings unpredictable survivability information closer to decision processes. This enables efficient execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision system (DS) to focus upon decisions that achieve survivability outcomes under unpredictability imposed by UUUR

    Tegen de natuur? = Against Nature?

    Get PDF
    The ways in which sexuality is conceptualized, narrated, mythologized and practised vary greatly across historical periods and cultures. But however variously sexuality has been constructed over centuries, it has very often been regarded as something that quickly changes into something unnatural. It is the aim of this thematic issue to focus on those ambivalent moments of transformation and re-evaluation

    The High Wasteland, Scar, Form, and Monstrosity in the English Landscape: What Is the Function of the Monster in Representations of the English Landscape?

    Full text link
    In this thesis, I explore themes and concerns that have arisen in my art practice, namely the relationship between landscape, monstrosity, and subjectivity. The tropes scar and form refer to features analogous in the subject and in the land which take on different specific meanings throughout the project, but in general terms, I relate them to trauma as a defining force. I suggest that monsters can be understood as embodying attitudes to time (a cause of trauma): those being fixity, which is resistant to temporality; and flux, which embraces temporality. Consequently, I define these categories and their opposition, presenting arguments for both monsters of fixity and flux monsters. I examine the construction of false universals of ‘England’ (categories of fixity) in representations of landscape and how they come to dominate the picturing of Britain more generally, alongside a mode I refer to as dynamic-fatalism, which examines the polemics and aesthetics of Wyndham Lewis (1882-1957). In this regard, I look at Lewis’s monstrous Tyro and its role in eliciting dehumanisation as a defining value in conceptions of a stratified society. Emphasis on creative practices and representations related to England serve to dissolve ‘proto-fascistic’ fantasies of a heroic, mono-cultural, and pure base for nation, dependent on categories of fixity. I suggest these values are instead understood as patrician, sexist, class-based, and racially biased. Given that landscape constructions are constitutive of our engagement with landscape, I conclude with a proposal for better ‘analogues’ of nature in the form of virescent space (a category of flux). I argue that virescent space is a phenomenon that sees the monster take on a specific role concerning the subject, one I define in relation to a wilderness destination in the poem Sir Gawain and the Green Knight (c.1370)

    Universal Smart Grid Agent for Distributed Power Generation Management

    Get PDF
    "Somewhere, there is always wind blowing or the sun shining." This maxim could lead the global shift from fossil to renewable energy sources, suggesting that there is enough energy available to be turned into electricity. But the already impressive numbers that are available today, along with the European Union's 20-20-20 goal – to power 20% of the EU energy consumption from renewables until 2020 –, might mislead us over the problem that the go-to renewables readily available rely on a primary energy source mankind cannot control: the weather. At the same time, the notion of the smart grid introduces a vast array of new data coming from sensors in the power grid, at wind farms, power plants, transformers, and consumers. The new wealth of information might seem overwhelming, but can help to manage the different actors in the power grid. This book proposes to view the problem of power generation and distribution in the face of increased volatility as a problem of information distribution and processing. It enhances the power grid by turning its nodes into agents that forecast their local power balance from historical data, using artificial neural networks and the multi-part evolutionary training algorithm described in this book. They pro-actively communicate power demand and supply, adhering to a set of behavioral rules this book defines, and finally solve the 0-1 knapsack problem of choosing offers in such a way that not only solves the disequilibrium, but also minimizes line loss, by elegant modeling in the Boolean domain. The book shows that the Divide-et-Impera approach of a distributed grid control can lead to an efficient, reliable integration of volatile renewable energy sources into the power grid
    corecore