49,204 research outputs found

    CryptoMaze: Atomic Off-Chain Payments in Payment Channel Network

    Get PDF
    Payment protocols developed to realize off-chain transactions in Payment channel network (PCN) assumes the underlying routing algorithm transfers the payment via a single path. However, a path may not have sufficient capacity to route a transaction. It is inevitable to split the payment across multiple paths. If we run independent instances of the protocol on each path, the execution may fail in some of the paths, leading to partial transfer of funds. A payer has to reattempt the entire process for the residual amount. We propose a secure and privacy-preserving payment protocol, CryptoMaze. Instead of independent paths, the funds are transferred from sender to receiver across several payment channels responsible for routing, in a breadth-first fashion. Payments are resolved faster at reduced setup cost, compared to existing state-of-the-art. Correlation among the partial payments is captured, guaranteeing atomicity. Further, two party ECDSA signature is used for establishing scriptless locks among parties involved in the payment. It reduces space overhead by leveraging on core Bitcoin scripts. We provide a formal model in the Universal Composability framework and state the privacy goals achieved by CryptoMaze. We compare the performance of our protocol with the existing single path based payment protocol, Multi-hop HTLC, applied iteratively on one path at a time on several instances. It is observed that CryptoMaze requires less communication overhead and low execution time, demonstrating efficiency and scalability.Comment: 30 pages, 9 figures, 1 tabl

    Introducing Accountability to Anonymity Networks

    Full text link
    Many anonymous communication (AC) networks rely on routing traffic through proxy nodes to obfuscate the originator of the traffic. Without an accountability mechanism, exit proxy nodes risk sanctions by law enforcement if users commit illegal actions through the AC network. We present BackRef, a generic mechanism for AC networks that provides practical repudiation for the proxy nodes by tracing back the selected outbound traffic to the predecessor node (but not in the forward direction) through a cryptographically verifiable chain. It also provides an option for full (or partial) traceability back to the entry node or even to the corresponding user when all intermediate nodes are cooperating. Moreover, to maintain a good balance between anonymity and accountability, the protocol incorporates whitelist directories at exit proxy nodes. BackRef offers improved deployability over the related work, and introduces a novel concept of pseudonymous signatures that may be of independent interest. We exemplify the utility of BackRef by integrating it into the onion routing (OR) protocol, and examine its deployability by considering several system-level aspects. We also present the security definitions for the BackRef system (namely, anonymity, backward traceability, no forward traceability, and no false accusation) and conduct a formal security analysis of the OR protocol with BackRef using ProVerif, an automated cryptographic protocol verifier, establishing the aforementioned security properties against a strong adversarial model

    Revisiting Deniability in Quantum Key Exchange via Covert Communication and Entanglement Distillation

    Full text link
    We revisit the notion of deniability in quantum key exchange (QKE), a topic that remains largely unexplored. In the only work on this subject by Donald Beaver, it is argued that QKE is not necessarily deniable due to an eavesdropping attack that limits key equivocation. We provide more insight into the nature of this attack and how it extends to other constructions such as QKE obtained from uncloneable encryption. We then adopt the framework for quantum authenticated key exchange, developed by Mosca et al., and extend it to introduce the notion of coercer-deniable QKE, formalized in terms of the indistinguishability of real and fake coercer views. Next, we apply results from a recent work by Arrazola and Scarani on covert quantum communication to establish a connection between covert QKE and deniability. We propose DC-QKE, a simple deniable covert QKE protocol, and prove its deniability via a reduction to the security of covert QKE. Finally, we consider how entanglement distillation can be used to enable information-theoretically deniable protocols for QKE and tasks beyond key exchange.Comment: 16 pages, published in the proceedings of NordSec 201

    Anonymity for practical quantum networks

    Full text link
    Quantum communication networks have the potential to revolutionise information and communication technologies. Here we are interested in a fundamental property and formidable challenge for any communication network, that of guaranteeing the anonymity of a sender and a receiver when a message is transmitted through the network, even in the presence of malicious parties. We provide the first practical protocol for anonymous communication in realistic quantum networks.Comment: 5 pages, published versio
    corecore