798 research outputs found

    Default ARTMAP

    Full text link
    The default ARTMAP algorithm and its parameter values specified here define a ready-to-use general-purpose neural network system for supervised learning and recognition.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423) Office of Naval Research (N00014-01-1-0624

    Lightweight Mutual Authentication Protocol for Low Cost RFID Tags

    Full text link
    Radio Frequency Identification (RFID) technology one of the most promising technologies in the field of ubiquitous computing. Indeed, RFID technology may well replace barcode technology. Although it offers many advantages over other identification systems, there are also associated security risks that are not easy to be addressed. When designing a real lightweight authentication protocol for low cost RFID tags, a number of challenges arise due to the extremely limited computational, storage and communication abilities of Low-cost RFID tags. This paper proposes a real mutual authentication protocol for low cost RFID tags. The proposed protocol prevents passive attacks as active attacks are discounted when designing a protocol to meet the requirements of low cost RFID tags. However the implementation of the protocol meets the limited abilities of low cost RFID tags.Comment: 11 Pages, IJNS

    Endothelial-monocyte activating polypeptide II disrupts alveolar epithelial type II to type I cell transdifferentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Distal alveolar morphogenesis is marked by differentiation of alveolar type (AT)-II to AT-I cells that give rise to the primary site of gas exchange, the alveolar/vascular interface. Endothelial-Monocyte Activating Polypeptide (EMAP) II, an endogenous protein with anti-angiogenic properties, profoundly disrupts distal lung neovascularization and alveolar formation during lung morphogenesis, and is robustly expressed in the dysplastic alveolar regions of infants with Bronchopulmonary dysplasia. Determination as to whether EMAP II has a direct or indirect affect on ATII→ATI trans-differentiation has not been explored.</p> <p>Method</p> <p>In a controlled nonvascular environment, an <it>in vitro </it>model of ATII→ATI cell trans-differentiation was utilized to demonstrate the contribution that one vascular mediator has on distal epithelial cell differentiation.</p> <p>Results</p> <p>Here, we show that EMAP II significantly blocked ATII→ATI cell transdifferentiation by increasing cellular apoptosis and inhibiting expression of ATI markers. Moreover, EMAP II-treated ATII cells displayed myofibroblast characteristics, including elevated cellular proliferation, increased actin cytoskeleton stress fibers and Rho-GTPase activity, and increased nuclear:cytoplasmic volume. However, EMAP II-treated cells did not express the myofibroblast markers desmin or αSMA.</p> <p>Conclusion</p> <p>Our findings demonstrate that EMAP II interferes with ATII → ATI transdifferentiation resulting in a proliferating non-myofibroblast cell. These data identify the transdifferentiating alveolar cell as a possible target for EMAP II's induction of alveolar dysplasia.</p

    Cryptanalysis of two mutual authentication protocols for low-cost RFID

    Full text link
    Radio Frequency Identification (RFID) is appearing as a favorite technology for automated identification, which can be widely applied to many applications such as e-passport, supply chain management and ticketing. However, researchers have found many security and privacy problems along RFID technology. In recent years, many researchers are interested in RFID authentication protocols and their security flaws. In this paper, we analyze two of the newest RFID authentication protocols which proposed by Fu et al. and Li et al. from several security viewpoints. We present different attacks such as desynchronization attack and privacy analysis over these protocols.Comment: 17 pages, 2 figures, 1 table, International Journal of Distributed and Parallel system

    A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia

    Get PDF
    Mechanoreceptors are sensory cells that transduce mechanical stimuli into electrical signals and mediate the perception of sound, touch and acceleration. Ciliated mechanoreceptors possess an elaborate microtubule cytoskeleton that facilitates the coupling of external forces to the transduction apparatus. In a screen for genes preferentially expressed in Drosophila campaniform mechanoreceptors, we identified DCX-EMAP, a unique member of the EMAP family (echinoderm–microtubule-associated proteins) that contains two doublecortin domains. DCX-EMAP localizes to the tubular body in campaniform receptors and to the ciliary dilation in chordotonal mechanoreceptors in Johnston's organ, the fly's auditory organ. Adult flies carrying a piggyBac insertion in the DCX-EMAP gene are uncoordinated and deaf and display loss of mechanosensory transduction and amplification. Electron microscopy of mutant sensilla reveals loss of electron-dense materials within the microtubule cytoskeleton in the tubular body and ciliary dilation. Our results establish a catalogue of candidate genes for Drosophila mechanosensation and show that one candidate, DCX-EMAP, is likely to be required for mechanosensory transduction and amplification

    Tubulins in C. elegans

    Get PDF
    The C. elegans tubulin family is composed of nine α-, six β-, and one γ-tubulin. Tubulins are highly conserved, functioning as α-β heterodimers that assemble into microtubules. These cylindrical and ubiquitous components of the cytoskeleton are critical for nearly all cellular and developmental processes. C. elegans has provided a model for the study of microtubules in multiple settings including separation of chromosomes, cellular polarity, and neuronal sensation. Tubulins and microtubules interact with a long list of other cellular proteins that regulate tubulin homeostasis, modify microtubule dynamics, and control incorporation into or disassociation of higher-order cellular structures such as spindles or ciliary axonemes. A collection of enzymes modifies tubulins, often at the variable carboxyl-terminal tail, adding another layer of regulation to microtubule structure and function. Genetic and cytological studies in C. elegans have revealed roles for tubulin and its associated proteins in numerous contexts from embryogenesis to adult behavior

    ARTMAP Neural Networks for Information Fusion and Data Mining: Map Production and Target Recognition Methodologies

    Full text link
    The Sensor Exploitation Group of MIT Lincoln Laboratory incorporated an early version of the ARTMAP neural network as the recognition engine of a hierarchical system for fusion and data mining of registered geospatial images. The Lincoln Lab system has been successfully fielded, but is limited to target I non-target identifications and does not produce whole maps. Procedures defined here extend these capabilities by means of a mapping method that learns to identify and distribute arbitrarily many target classes. This new spatial data mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of canonical algorithms and a benchmark testbed has enabled the evaluation of candidate recognition networks as well as pre- and post-processing and feature selection options. The resulting mapping methodology sets a standard for a variety of spatial data mining tasks. In particular, training pixels are drawn from a region that is spatially distinct from the mapped region, which could feature an output class mix that is substantially different from that of the training set. The system recognition component, default ARTMAP, with its fully specified set of canonical parameter values, has become the a priori system of choice among this family of neural networks for a wide variety of applications.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Office of Naval Research (N00014-01-1-0624
    corecore