3,576 research outputs found

    Solving the Ghost-Gluon System of Yang-Mills Theory on GPUs

    Full text link
    We solve the ghost-gluon system of Yang-Mills theory using Graphics Processing Units (GPUs). Working in Landau gauge, we use the Dyson-Schwinger formalism for the mathematical description as this approach is well-suited to directly benefit from the computing power of the GPUs. With the help of a Chebyshev expansion for the dressing functions and a subsequent appliance of a Newton-Raphson method, the non-linear system of coupled integral equations is linearized. The resulting Newton matrix is generated in parallel using OpenMPI and CUDA(TM). Our results show, that it is possible to cut down the run time by two orders of magnitude as compared to a sequential version of the code. This makes the proposed techniques well-suited for Dyson-Schwinger calculations on more complicated systems where the Yang-Mills sector of QCD serves as a starting point. In addition, the computation of Schwinger functions using GPU devices is studied.Comment: 19 pages, 7 figures, additional figure added, dependence on block-size is investigated in more detail, version accepted by CP
    • …
    corecore