24 research outputs found

    A New Decision Model for Reducing Trim Loss and Inventory in the Paper Industry

    Get PDF
    In the paper industry, numerous studies have explored means of optimizing order allocation and cutting trim loss. However, enterprises may not adopt the resulting solutions because some widths of the inventory exceed or are less than those required for acceptable scheduling. To ensure that the results better suit the actual requirements, we present a new decision model based on the adjustment of scheduling and limitation of inventory quantity to differentiate trim loss and inventory distribution data. Differential analysis is used to reduce data filtering and the information is valuable for decision making. A numerical example is presented to illustrate the applicability of the proposed method. The results show that our proposed method outperforms the manual method regarding scheduling quantity and trim loss

    A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem With Set Up Times

    Get PDF
    The textbook Dantzig-Wolfe decomposition for the Capacitated LotSizing Problem (CLSP),as already proposed by Manne in 1958, has animportant structural deficiency. Imposingintegrality constraints onthe variables in the full blown master will not necessarily givetheoptimal IP solution as only production plans which satisfy theWagner-Whitin condition canbe selected. It is well known that theoptimal solution to a capacitated lot sizing problem willnotnecessarily have this Wagner-Whitin property. The columns of thetraditionaldecomposition model include both the integer set up andcontinuous production quantitydecisions. Choosing a specific set upschedule implies also taking the associated Wagner-Whitin productionquantities. We propose the correct Dantzig-Wolfedecompositionreformulation separating the set up and productiondecisions. This formulation gives the samelower bound as Manne'sreformulation and allows for branch-and-price. We use theCapacitatedLot Sizing Problem with Set Up Times to illustrate our approach.Computationalexperiments are presented on data sets available from theliterature. Column generation isspeeded up by a combination of simplexand subgradient optimization for finding the dualprices. The resultsshow that branch-and-price is computationally tractable andcompetitivewith other approaches. Finally, we briefly discuss how thisnew Dantzig-Wolfe reformulationcan be generalized to other mixedinteger programming problems, whereas in theliterature,branch-and-price algorithms are almost exclusivelydeveloped for pure integer programmingproblems.branch-and-price;Lagrange relaxation;Dantzig-Wolfe decomposition;lot sizing;mixed-integer programming

    ONE-DIMENSIONAL CUTTING STOCK PROBLEM (1D-CSP): A STUDY ON DATA DEPENDENT TRIM LOSS

    Get PDF
    ABSTRACT A generalized approach is introduced for getting minimal trim in one-dimensional cutting stock problem (1D-CSP) which occurs extensively while manufacturing of different engineering objects. Our study is especially focused on transmission tower manufacturing industry. The concept of computing total trim by using the idea of pre-defined sustainable trim has been explored in previous work of authors. Given m stock lengths ܷ ଵ , ܷ ଶ , … , ܷ , the cutting plan consists of cutting of at most two order lengths at a time out of the demanded set of n order lengths ݈ ଵ , ݈ ଶ , … , ݈ . Considering the given data, the total trim has been computed corresponding to two different sustainable trims of order one (viz.‫ݐ‬ ௦ ଵ ) and order two (viz.‫ݐ‬ ௦ ଶ ). Introducing various values of sustainable trims as knots between ‫ݐ‬ ௦ ଵ and ‫ݐ‬ ௦ ଶ , the total trim has been computed corresponding to each knot, the linear approximation has been constructed which predict the total trim loss at any arbitrary point ‫ݐ‬ lying between ‫ݐ‬ ௦ ଵ and ‫ݐ‬ ௦ ଶ

    Bin Packing and Related Problems: General Arc-flow Formulation with Graph Compression

    Full text link
    We present an exact method, based on an arc-flow formulation with side constraints, for solving bin packing and cutting stock problems --- including multi-constraint variants --- by simply representing all the patterns in a very compact graph. Our method includes a graph compression algorithm that usually reduces the size of the underlying graph substantially without weakening the model. As opposed to our method, which provides strong models, conventional models are usually highly symmetric and provide very weak lower bounds. Our formulation is equivalent to Gilmore and Gomory's, thus providing a very strong linear relaxation. However, instead of using column-generation in an iterative process, the method constructs a graph, where paths from the source to the target node represent every valid packing pattern. The same method, without any problem-specific parameterization, was used to solve a large variety of instances from several different cutting and packing problems. In this paper, we deal with vector packing, graph coloring, bin packing, cutting stock, cardinality constrained bin packing, cutting stock with cutting knife limitation, cutting stock with binary patterns, bin packing with conflicts, and cutting stock with binary patterns and forbidden pairs. We report computational results obtained with many benchmark test data sets, all of them showing a large advantage of this formulation with respect to the traditional ones

    Network Migration Problem: A Logic-based Benders Decomposition Approach Driven by Column Generation and Constraint Programming

    Full text link
    Telecommunication networks frequently face technological advancements and need to upgrade their infrastructure. Adapting legacy networks to the latest technology requires synchronized technicians responsible for migrating the equipment. The goal of the network migration problem is to find an optimal plan for this process. This is a defining step in the customer acquisition of telecommunications service suppliers, and its outcome directly impacts the network owners' purchasing behaviour. We propose the first exact method for the network migration problem, a logic-based Benders decomposition approach that benefits from a hybrid constraint programming-based column generation in its master problem and a constraint programming model in its subproblem. This integrated solution technique is applicable to any integer programming problem with similar structure, most notably the vehicle routing problem with node synchronization constraints. Comprehensive evaluation of our method over instances based on six real networks demonstrates the computational efficiency of the algorithm in obtaining quality solutions. We also show the merit of each incorporated optimization paradigm in achieving this performance
    corecore