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ABSTRACT 
  

A generalized approach is introduced for getting minimal trim in one- dimensional cutting 

stock problem (1D-CSP) which occurs extensively while manufacturing of different engineering 

objects. Our study is especially focused on transmission tower manufacturing industry. The concept 

of computing total trim by using the idea of pre-defined sustainable trim has been explored in 

previous work of authors. Given m stock lengths ��, ��, … , ��, the cutting plan consists of cutting of 

at most two order lengths at a time out of the demanded set of n order lengths ��, ��, … , ��. 

        Considering the given data, the total trim has been computed corresponding to two different 

sustainable trims of order one (viz.	
� ) and order two (viz.	
�). Introducing various values of 

sustainable trims as knots between 	
� and 	
�, the total trim has been computed corresponding to  

each knot, the linear approximation has been constructed which predict the total trim loss at any 

arbitrary point 	 lying between 	
� and 	
�. 

 

KEYWORDS: First order sustainable trim, Second order sustainable trim, 1D-CSP, Non-negative 

integral valued (NIV) linear combination, Hat function, Linear approximation. 

 

AMS (2000) SUBJECT CLASSIFICATION: 90C90; 90C27; 90C10. 

 

1. INTRODUCTION 
 

Various sizes of items are ordered in industries dealing with processing of materials such as 

steel, film, textiles etc. The ordered items are cut from bars, plates or sheets of raw materials that 

have a fixed size (cf. [10], [14], [15], [16]). During the process of cutting of these items, the problem 

for trying to minimize the waste of raw material is referred to as a cutting stock problem (CSP). The 

CSP plays an important role in the economic status of the processing industries and it has been 
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entered into several fields of research like mathematical modeling, computer programming, ocean 

engineering, mechanical engineering etc. (cf. [6], [11], [12], [16]). In the clothing industry, the first 

phase of the stock cutting process is one-dimensional cutting of a smaller number of long pieces in 

the form of fabric rolls into a large number of short pieces named pattern shapes (cf. [10]). 

The analytic approaches of optimization have been proposed by several researchers (see [1], 

[2], [4], [5], [7], [8], [9], [12], [13], [17], [18]), but it has been noticed that from implementation 

point of view, these methods have been discarded by almost all industries due to their complexity. 

The analytic approach consists of following consecutive steps:  

• Mathematical modeling 

• Algorithm 

• Cutting plan 

• Computation of trim loss 

These steps have been proposed and verified theoretically and then the relevant industries are 

supposed to adopt the method practically. But, it has been observed that there is a big-gap between 

analytic solution and its practical implementation. Our work in this paper is mainly focused on the 

transmission tower manufacturing industry and in accordance with the practical approach, 

mathematical model has been designed. Powar et al in [12] (cf. [11] also) have proposed the more 

functional cutting plan which can be conveniently acceptable by any industry dealing with 1D-CSP. 

          The cutting plan described in [12] (see also [11]) consists of cutting of at most two order 

lengths at a time out of the required n order lengths ��, ��, … ��, in from a given set of m stock lengths ��, ��, …��. At each stage, the cutting of at most two order lengths at a time will be continued till 

the required number of pieces are cut totally. The concept of sustainable trim of order one 	
� and of 

order two 	
� has been introduced in [12] and [11] respectively. This idea of pre-defined sustainable 

trims plays a crucial role in controlling the total trim. 

Spline functions (piece-wise polynomial functions) are well-known best approximating 

functions which are extensively use in all branches of science and technology. For our analysis, we 

have considered a clan of data and computed the weighted average of order lengths. Correspond to 

each weighted average in the domain, the trim losses with respect to 	
� and 	
� have been computed. 

Using the basis functions (Hat functions or Chapeau functions) for linear approximation, linear 

splines (cf. [3]) are generated given any arbitrary set of data and the value of approximate trim loss 

may be predicted immediately in accordance with our proposed cutting plan. 

 

2. PRE-REQUISITES 
 

All stock lengths and order lengths, we consider as integers throughout our analysis. 

According to the requirement, the lengths can be converted into integers by multiplying them with 10��� � 1, integer�. We use the following notations: ���� � Block of integers 0,1, … , � (index set), � � ���� means � can be any number from the set    �0, 1, 2, … , �!. �" � Order lengths # $ 0, 1, 2, … , � arranged in ascending order with respect to length and �% $ 0 by 

convention. &" � Required number of pieces of order length �", &% $ 0. �' � Stock length �� $ 1, 2, … ,(� arranged in ascending order with respect to length. 

 It has been noticed that in particular, in the transmission tower designing industry that most 

of the required number of order lengths i.e. &" ′s are integral multiple of each other. In view of this 

observation, we classify the order lengths in the following two categories in accordance with their 

required number of pieces: 

Category I: (C-I) We collect all those order lengths whose required number of pieces are integral 

multiple of each others. 
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Category II: (C-II) It is the collection of all those order lengths whose required number of pieces 

are prime numbers (their common multiple is 1). 

 

3. SUSTAINABLE TRIMS 

 

3.1  Order One  

In order to cut the linear combination *"'  (say) of the two order lengths �" and �' from the 

given stock lengths ��, ��, … , ��, we have to decide upto what extent, we allow the raw material to 

convert into the scrape. Throughout our cutting process (excluding the last step where it is possible 

only that few piece of some order length are left to cut), we follow the restriction that 0 + �, � *"' + 	
�,    - $ 1,2,… ,( and 	
� is the sustainable trim of order one and defined as follows: 

 

. $ �%&% / ��&� /0/ ��&�&% / &� /0/ &� $ ∑ �"&"�"2%∑ &'�'2%  

 

We next define   ., $ |�, � #.|      (- $ 1, 2, … ,( and # is an appropriate positive integer �1, for which ., is minimum) 

 

where ��, ��, … , �� are the stock lengths. We finally define  

 

                                	
� $ ∑ 456578�                                          (3.1) 

 

which is the desired sustainable trim of order one. 

 

3.1 Remark  
             Analytically, it has been noticed that the average value covers the acceptable, over all 

original values. Hence, we have taken the weighted mean of total required lengths. 

 

3.2  Order Two 

Following the same restriction as for 	
� and using the notations from section 2, we define  

 

9� $ l%d% /0/ l;d;d% / d� /0/ d; $ ∑ �"&"�"2%∑ &'�'2%  

 

By convention,   9% $ 0,  9� $ ��,     9� $ <=>=?<8>8?<@>@>=?>8?>@ , … , 9� $ ∑ <A>ABA7=∑ >CBC7=   

 

We next define the second order weighted means 

 9�� $ 9% / 9� /0/ 9�� / 1 . 
 

Consider    ., $ |�, � # 9��|,   - $ 1,2,… ,(. 
 # is an appropriate positive integers � 1, for which ., is minimum. ��, �� , … , �� are stock lengths. 
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3.2 Remark 

 9�� is the average order length which is assumed to be cut from the given stock length �'�� $ 1,… ,(�. The integer # denotes the number of pieces of average stock length to be cut from 

the stock length �,. We finally define  

 

                                                                     	
� $ ∑ 45B578�                                                      (3.2) 

 

which is the sustainable trim of order two viz. 	
�. 

 

4. MATHEMATICAL MODELING 

 

We first consider C-I and define the following ratios: 

 

                         
>A>C $ DAEFACGCEFAC                                                                (4.1) 

 

 (where H"' is a positive integer , � � ����, # I � )                     
 

Note: It is not necessary to consider always the largest common factor between &" and &'. Any other 

factor H" (if exists) may be selected according to the length of stock to minimize the trim. 

 In view of (4.1), define the following set: 

 

             J $ �*"' $ K"�" / L'�' M *"' + ��, K", L' � 0, integer  N# O �, #, � � ����P!      (4.2) 

 

 We are now in a position to define the sets J, Q J �- $ 1, 2, … ,(� as follows: 

 

        J, $ �*"' : 0 + �, � *"' + 	
S, - � ��(�, #, � � ����, *"' � J, T $ 1,2!          (4.3) 

 

             where 	
S is defined by (3.1) and (3.2) respectively for T $ 1 and λ $ 2. 

 At this stage, we may come across with the following situations: 

• J, $ U, V - � ��(�, in this case, all the order lengths have to shift in C-II. 

• In view of the definition of 	
S, the sets J, �- � ��(�� may or may not cover all order lengths 

belonging to Category-I. 

In view of above observations and the definition of the sets J,, we redefine our categories I 

and II as follows: 

Category-I (C-I)  Let �D�, �D@ , … , �DW order lengths have been covered by the sets      J, �- $1, 2, . . , (�. For convenience, we denote these order lengths by ��, ��, … , �W arranged in ascending 

order with respect to the length. 

 

4.1 Remark  

There may exist some order lengths �" and �' (say) such that &" and  &'  ofcourse are multiple 

of each others but the length of combination *"'  exceeds the largest stock length �� or  ��' � *"'� 
exceeds the sustainable trim loss. We shift all such order lengths to Category-II and finally, we 

assume that the order lengths ��, ��, … , �W have been covered by Category-I. 

Category-II (C-II) The remaining all order lengths X $ � � Y denoted by ��, ��, … , �Z arranged in 

ascending order with respect to the length. 
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4.2 Remark 

(i) The real numbers 	
S �T $ 1, 2� defined by �3.1� and �3.2� play a crucial role in the 

computation of total trim loss. It is natural to expect that the trim loss can be minimized by 

considering the minimum value lying between 0 and  	
S , but it has been experienced practically 

in the industries that by increasing the value of 	
S, the impact on the total trim loss results in a 

significantly acceptable range in  some particular cases. But we are strict to 	
S only. 

(ii) In order to implement the algorithm smoothly, the data of more than one tower (preferably of 

same pattern) may be clubbed. 

Now consider Category-II and order lengths ��, ��, … , �Z with the required number of pieces &�, &�, … , &Z  respectively. For # \ �, #, � � ��X�, define: 

 

                                   &" $ ��K"� / &"�                                                                      (4.4) 

 

                                   &' $ ��L'� / &'�                                                                      (4.5) 

 

            0 + �, � N�"K"� / �'L'�P $ �],  say� + 	
S   �T $ 1, 2�  
 

for at least one value of k (k=1,2,…,m). The number �� has been chosen in such a way that ], 

attains a minimum value lying between 0 and  	
S. 

Similarly, choose a number �� satisfying the following condition: 

 

                                  &"� $ ��K"� / &"�                                                                      (4.6) 

 

                                 &'� $ ��L'� / &'�                                                                       (4.7) 

 

Proceeding this way, we finally define 

 

                                           &",
_� $ �
K"
 / &"
                                                                  (4.8) 

 

                                 &',
_� $ �
L'
 / &'
                                                                   (4.9) 

 

The process would be continued till either &"
 $ 0 or &'
 $ 0 and in view of (4.4) - (4.9), we 

have 

                               &" $ ∑ �,K", / &"

,2�      K", I K",,?�                                      (4.10) 

 

                              &' $ ∑ �,L', / &'

,2�      L', I L",,?�                                  (4.11)  

 

                                 &`
 $ �
?�a`,
?� / &`,
?�        �&`,
?� O a`,
?��                      (4.12) 

 

where b $ # or �, a $ K or L for # or � respectively. Also �, , K", , L', are positive integers, may be 

selected according to the length of stock in order to minimize the trim. 

Referring relation (4.10)-(4.12), we now define the set  

 � $ �d"'F , d
̀?�, d
̀?�: d"'F $ K"F�" / L'F�' , d
̀?� $ a`,
?��`, d
̀?� $             &`,
?��`, where d"'F , d
̀?�, d 
̀?� + ��, b $ # gH �, a $ K gH L according as  b $              # gH � repectively, H $ 1, 2, … , k.  #, � $ 0, 1, … , X!                      (4.13) 

 



International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 

529 

 

Define |cl| $ max clo , where c $ a or b  for fixed # and arbitrary �  
 

                      q"' + ��                                                                      (4.14) 

 

In view of relation (4.13), we now define 

 

                          �,F $ �d"'F , d
̀?�, d 
̀?�: 0 O r�, � Nd"'F |d
̀?�|d 
̀?�Pr O 	
S                          (4.15) 

 

                                                  �T $ 1, 2�, H $ 1, 2,… , k               

 

5. CUTTING PLAN 
  

It has been noticed practically that with the preference of starting from the largest order 

lengths to the smaller ones, the cutting process has been executed in general as the smaller order 

lengths left behind can be adjusted easily amongst them and results in less trim loss (see Figure 8.1). 

 

• Cutting of the largest order length st from category-I 

Referring relation (4.14), we consider |*W|. In view of J, [cf. relation (4.10)], there exist sets Ju , JF, J
, … �1 + v, H, k, … + (� containing |*W| along with some other *"'’s. Corresponding to 

each set Ju , JF, J
, … respective fixed stock lengths �u , �F , �
, …  have been assigned. We select the 

combination *Wu corresponding to the smallest stock length �W and focus our attention on it for the 

first step of cutting. 

 Let r*Wr $ *Wu(say) for v � ��Y�~W where     *Wu $ KW�W / Lu�u 

satisfying the condition: 

 

                                                         
>x>y $ DxEFxyGyEFxy                                                   (5.1) 

 

In view of (5.1), it may be noted that by cutting HWu bars of stock length �W, total number of 

required pieces of order lengths �W and �u are cut. 

             Define                           

 

                    	W� $ HWuN�W � r*WrP + HWu	
S  �T $ 1, 2�                                         (5.2) 

 

• Cutting of other stock lengths from the set z{ 

For #, � \ Y, v, we next consider the largest order length �` (say) contained in JF and consider |*`| for *`|  � J, corresponding to the stock length �` satisfying the condition: 

 

                  &` &| $  K` E H̀ |L| E H
|                   for some ~ � ��Y�~�W,u,`! 
 

Referring relation (5.1), it is clear that by cutting H̀ |   bars of the stock length �`, total 

number of required pieces of order lengths �` and �| have been cut. Define 

 

            	�̀ $ H̀  ��` � |*`|� + H̀ 	
S   �T $ 1, 2�                                  (5.3) 
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Proceeding this way, for #, � \ Y, v, b, ~, we consider the next largest order length out of the 

remaining once and applying the same technique as before, the trim loss with respect to 

corresponding stock lengths �'’s has been computed. The process is continued till all order lengths 

belonging to category I are totally exhausted. 

 

                                                         �� $ ∑ 	W�W�����                                                             (5.4) 

 

If this cutting process covers all the order lengths ��, ��, … , ��, then STOP. 

 

• Cutting of the largest order length s� from Category-II 

Referring definition of �,F [cf. relation (4.15)], we first set H $ 1 and consider dZ'� for fixed X and arbitrary � and select dZ'� as follows: 

 |dZ| $ max'�����~� dZ'� 

 

Such that |dZ| + �' for some � � ��(�. 
Now, corresponding to |dZ|, there exists sets �u�, �F�, �
�, …  associated with the stock lengths �u , �F, �
, …  respectively containing |dZ|. We select the set �u� corresponding to the smallest stock 

length �u. In view of the relation (4.15), we have 

 

                                              dZ'� $ KZ��Z / L'��'    for � � ��X�~Z. 
 

It is clear from relations (4.10) and (4.11), that by cutting �� bars of stock length �u, we cut ��. KZ� pieces of order length �Z and ��. L'� pieces of order length �'. Our aim is to finish cutting of 

only two order lengths first �Z and �' (fixed) at a time. Following cases may arise: 

Case1.  Either &Z � ��. KZ� O KZ� or &' � ��L'� O L'� or both the inequalities hold together. 

Case 2.  Either &Z $ ��. KZ� or &' $ ��L'�. 

 

5.1 Remark   

          Here two cases will not hold together because in that case �Z and �' will belong to Category-I. 

 We first deal with the case 1. In view of the relation (4.13), we next consider  

 

                                     dZC� $ KZ��Z / L'���  (� fixed as given by (4.13) )  

 

 Now, corresponding to dZC� , there exist sets �u�, �F�, �
�, …  containing it. The sets �u�, �F�, �
�, …  

are associated with the stock length �u , �F, �
, …  respectively. We select the set �F�(say) 

corresponding to the smallest stock length �F. It is clear from relations (4.10) and (4.11) that by 

cutting �� bars of stock length �F, we cut ��. KZ� more pieces of order length �Z and ��. L'� more 

pieces of order length �'. We continue the process till either &Z $ ∑ �,K",
,2�  or &' $ ∑ �,L',
,2� . 

 Let if possible &Z $ ∑ �,K",
,2�  holds, then &'  would be of the form 

 

                                              &' $ ∑ �,L',
,2� / &'
 
 

where we express &'
 $ �
?�L',
?� / &',
?� �&',
?� O L',
?��. 
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Referring the relation (4.13), we now consider            

      

     d'
?� $ L',
?��'  
 

 Now, corresponding to d'
?�, there exists sets �u
?�, �F
?�, �

?�, …  containing it. The sets  �u
?�, �F
?�, �

?�, …  associated with the stock lengths �u , �F, �
, … respectively. We select the set �

?� corresponding to the smallest stock length �
(say). It is clear from relations (4.10) and (4.11) 

that by cutting of stock length �
, we cut �
?�. &',
?� pieces of order length �'. Now &',
?� pieces of 

order length �' are left to cut out of &'. We now consider �, � &',
?��' for all - $ 1, 2, … ,( and 

select the minimum difference corresponding to the stock length ��(say), all pieces of order length �' 
have been cut. 

 

5.2 Remark   

At this last step of cutting �� � &',
?�. �' may exceed the sustainable trim 	
. 
         We now compute the trim loss corresponding to the order lengths �Z and �' belonging to the 

Category-II. 

 

	F8� $ ��u � dZC� ��� / ��F � dZC� � �� /0        $ ���< � dZCF ��F / ��� � &',
?��'�

F2�  

 

Order lengths �Z and �' belonging to category-II have been cut completely. Remaining order 

lengths we again arrange in increasing order ��, ��, … , �� (say). We first consider  

 |d�| $ max'�����~� d�C�         � � ����~� 

 

such that |d�| + �' for some � � ��(�. 
 

Proceeding in a similar manner, we get 

 

                      	F@′ $ ∑ ��< � d�CF � �F�F2� / N�� � &',
?��'P        � � ��(� 
 

We continue the process till all order lengths are exhausted and get 

 

                                           �� $ 	F8′ / 	F@′ /0 

 

Finally, we get total trim      

 

       � $ �� / ��. 

 

The percentages of trim lose with respect to 	
� and 	
� have been computed in accordance with 

the total stock length used. 
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6. ALGORITHM 
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7. HAT FUNCTIONS AND THEIR APPLICATIONS IN 1D-CSP 
  

Piecewise linear approximation may not have the practical significance in comparison to 

cubic spline or even higher order approximation. But it shows most of the essential features of 

piecewise polynomial approximation in a simple and easily understandable setting. 

 Consider the closed interval [a, b] on the real line and define a partition P: 

 �: * $ �� O ��… ,O �� $ d 
 

Let $�denote the collection or linear space of all continous broken lines on [a, b] with breaks at ��, … , ��_�    (see figure 7.1). We define the basis for $� (cf. [3]) 

 

Let     �%: $ �� ,   ��?� : $ �� and set  

 

                               �"��� $ ��� � �"_�� ��" � �"_� �⁄ , �"_� O � + �"��"?� – ��/��"?� � �"�, �" + � O �"?� 0                    ,                   otherwise �                           (7.1) 

 

 

              

 

 

 

 

 

 

 

Figure 7.1 Hat Functions 
 

It may be checked easily that the set S=��"���!"2��  is linearly independent. If we denote the 

broken line interpolation to g by ���, then it is given by                  

       ��� $ ∑ ���"��"�"2�                                                          (7.2) 

 

which satisfy the interpolatory conditions              

   �����"� $ ���"�      # $ 1,… . . , � 
 

7.1  Applications 

For the given data, the average order lengths �' have to be computed say �% is the shortest and �� is the longest average order length. Consider the closed interval ��%, ��� on � and define the 

partition � as follows: 

 

                                      �: * $ �% O ��… . . O �� $ d                                             (7.3) 

 

Corresponding to each �"  �# $ 0,… . ��, the total trim loss �	" k*�� 	" $ ���"� by using the 

algorithm described in section 6 has to be computed. 



International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 

535 

 

Similarly, corresponding to the sustainable trims of order one 	
� and two 	
�, we define a 

partition and compute the broken line interpolation ��� �� ��%, ���. 
Since 	, ′k are known, the basis functions (Hat functions) �" ′k as described in (7.1) can be 

computed for the partition P in (7.3). Referring relation (7.2), we can write the broken line 

interpolant ��� for the approximate trim loss as follows:    

   

��� $����"��"
�
"2�  

 

which gives the information of approximate trim loss at any arbitrary point �� ��%, ���. 
 

7.1 Remark 
Broken lines are neither very smooth nor very efficient approximation. Both for a smoother 

and more efficient approximation one has to go to piecewise polynomial approximation with higher 

order pieces. The most popular choice continues to be a piecewise cubic approximating function. 

Since, it is the first step of splines to enter into a field of cutting-stock problem (CSP), authors have 

started with the simplest formulation of approximate function for the trim loss. Higher order 

approximation would be constructed in accordance with the demand of this method in the practical 

field. 

 

8. ILLUSTRATIVE EXAMPLE 

 

Tables of data 

     Order lengths and required number of pieces 

S.No. 
Order lengths 

(in cm.) 

Required no. of 

pieces 

S.No. Order lengths 

(in cm.) 

Required no. of 

pieces 

1. 
801 03 6. 498 16 

2. 
748 24 7. 492 39 

3. 
733 46 8. 471 21 

4. 
641 23 9. 327 40 

5. 
548 39 10. 303 32 

Table 8.1 

     

 

    Available stock lengths  

S.No. 
Stock lengths (in cm.) S.No. Stock lengths (in cm.) 

1. 
2110 4. 3883 

2. 
2210 5. 4177 

3. 
3120 6. 4239 

Table 8.2 
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Figure 8.1 Cutting Plan 

 

 
Figure 8.2 Screen shot of the programming 

 

 
Figure 8.3 Screen shot of the programming 
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 Computations as discussed in sections 3 and 5 

       First order sustainable trim ����� = 66.3591, 

       Second order sustainable trim ����� = 68.1928 

 

S. No. Sustainable Trims Total Trim in % 

1. 66.3591 0.3461 

2. 66.8176 0.3461 

3. 67.2756 0.1225 

4. 67.7342 0.1225 

5. 68.1928 0.1225 

Table 8.15 

 

      Partition  � =  {���$ 66.3591� O ���$ 66.8176� O τ¤�$ 67.2756� O τ¥�$ 67.7342� O
τ§�$ 68.1928�}              

                                                                           

 
 

Figure 8.4 Linear splines for total trim loss corresponding to various sustainable trims 

 

9. CONCLUSION 
 

It is interesting to note that the impact of sustainable trim on the total trim plays key role in 

1D-CSP. Referring Figure 8.4, it is apparent that corresponding  to the second order sustainable trim �	
�� which is greater than the sustainable trim of order one �	
��, the total trim loss is minimal 

corresponding to �	
�� in the interval �	
�, 	
��. It is suggested that for a given data, and given stock 

lengths, after computing �	
�� and �	
��, the minimal trim loss may be predicated locally as per the 

proposed cutting plan. 
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