47,230 research outputs found

    ANALISA METODE BRANCH AND BOUND UNTUK PROBLEMA PROGRAM INTEGER TAK LINIER (Literature Review)

    Get PDF
    In this paper, we analyze branch and bound methods for solving non linear integer programming problem. After solving a problem by ignoring the integrality requirements, this strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points

    A Branch and Bound Approach to Optimal Allocation in Stratified Sampling

    Get PDF
    For practical applications of any allocations, integer values of the sample sizes are required. This could be done by simply rounding off the non-integer sample sizes to the nearest integral values. When the sample sizes are large enough or the measurement cost in various strata are not too high, the rounded off sample allocation may work well. However for small samples in some situations the rounding off allocations may become infeasible and non-optimal. This means that rounded off values may violate some of the constraints of the problem or there may exist other sets of integer sample allocations with a lesser value of the objective function. In such situations we have to use some integer programming technique to obtain an optimum integer solution. Keywords:  Stratified sampling, Non-linear Integer Programming, Allocation Problem,  Langrangian Multiplier, Branch & Bound Techniqu

    Models and Methods for Merge-In-Transit Operations

    Get PDF
    We develop integer programming formulations and solution methods for addressing operational issues in merge-in-transit distribution systems. The models account for various complex problem features including the integration of inventory and transportation decisions, the dynamic and multimodal components of the application, and the non-convex piecewise linear structure of the cost functions. To accurately model the cost functions, we introduce disaggregation techniques that allow us to derive a hierarchy of linear programming relaxations. To solve these relaxations, we propose a cutting-plane procedure that combines constraint and variable generation with rounding and branch-and-bound heuristics. We demonstrate the effectiveness of this approach on a large set of test problems with instances with up to almost 500,000 integer variables derived from actual data from the computer industry. Key words : Merge-in-transit distribution systems, logistics, transportation, integer programming, disaggregation, cutting-plane method

    A novel dual-decomposition method for non-convex mixed integer quadratically constrained quadratic problems

    Full text link
    In this paper, we propose the novel p-branch-and-bound method for solving two-stage stochastic programming problems whose deterministic equivalents are represented by non-convex mixed-integer quadratically constrained quadratic programming (MIQCQP) models. The precision of the solution generated by the p-branch-and-bound method can be arbitrarily adjusted by altering the value of the precision factor p. The proposed method combines two key techniques. The first one, named p-Lagrangian decomposition, generates a mixed-integer relaxation of a dual problem with a separable structure for a primal non-convex MIQCQP problem. The second one is a version of the classical dual decomposition approach that is applied to solve the Lagrangian dual problem and ensures that integrality and non-anticipativity conditions are met in the optimal solution. The p-branch-and-bound method's efficiency has been tested on randomly generated instances and demonstrated superior performance over commercial solver Gurobi. This paper also presents a comparative analysis of the p-branch-and-bound method efficiency considering two alternative solution methods for the dual problems as a subroutine. These are the proximal bundle method and Frank-Wolfe progressive hedging. The latter algorithm relies on the interpolation of linearisation steps similar to those taken in the Frank-Wolfe method as an inner loop in the classic progressive hedging.Comment: 19 pages, 5 table

    Pump scheduling in drinking water distribution networks with an LP/NLP-based branch and bound

    Get PDF
    This paper offers a novel approach for computing globally optimal solutions to the pump scheduling problem in drinking water distribution networks. A tight integer linear relaxation of the original non-convex formulation is devised and solved by branch and bound where integer nodes are investigated through non-linear programming to check the satisfaction of the non-convex constraints and compute the actual cost. This generic method can tackle a large variety of networks , e.g. with variable-speed pumps. We also propose to specialize it for a common subclass of networks with several improving techniques, including a new primal heuristic to repair near-feasible integer relaxed solutions. Our approach is numerically assessed on various case studies of the literature and compared with recently reported results

    An outer approximation algorithm for multi-objective mixed-integer linear and non-linear programming

    Full text link
    In this paper, we present the first outer approximation algorithm for multi-objective mixed-integer linear programming problems with any number of objectives. The algorithm also works for certain classes of non-linear programming problems. It produces the non-dominated extreme points as well as the facets of the convex hull of these points. The algorithm relies on an oracle which solves single-objective weighted-sum problems and we show that the required number of oracle calls is polynomial in the number of facets of the convex hull of the non-dominated extreme points in the case of multiobjective mixed-integer programming (MOMILP). Thus, for MOMILP problems for which the weighted-sum problem is solvable in polynomial time, the facets can be computed with incremental-polynomial delay. From a practical perspective, the algorithm starts from a valid lower bound set for the non-dominated extreme points and iteratively improves it. Therefore it can be used in multi-objective branch-and-bound algorithms and still provide a valid bound set at any stage, even if interrupted before converging. Moreover, the oracle produces Pareto optimal solutions, which makes the algorithm also attractive from the primal side in a multi-objective branch-and-bound context. Finally, the oracle can also be called with any relaxation of the primal problem, and the obtained points and facets still provide a valid lower bound set. A computational study on a set of benchmark instances from the literature and new non-linear multi-objective instances is provided.Comment: 21 page
    • …
    corecore