6 research outputs found

    EEG data analysis with stacked differentiable neural computers

    Full text link
    © 2018, Springer-Verlag London Ltd., part of Springer Nature. Differentiable neural computer (DNC) has demonstrated remarkable capabilities in solving complex problems. In this paper, we propose to stack an enhanced version of differentiable neural computer together to extend its learning capabilities. Firstly, we give an intuitive interpretation of DNC to explain the architectural essence and demonstrate the stacking feasibility by contrasting it with the conventional recurrent neural network. Secondly, the architecture of stacked DNCs is proposed and modified for electroencephalogram (EEG) data analysis. We substitute the original Long Short-Term Memory network controller by a recurrent convolutional network controller and adjust the memory accessing structures for processing EEG topographic data. Thirdly, the practicability of our proposed model is verified by an open-sourced EEG dataset with the highest average accuracy achieved; then after fine-tuning the parameters, we show the minimal mean error obtained on a proprietary EEG dataset. Finally, by analyzing the behavioral characteristics of the trained stacked DNCs model, we highlight the suitableness and potential of utilizing stacked DNCs in EEG signal processing

    Multi-stream 3D Convolution Neural Network with Parameter Sharing for Human State Estimation

    Full text link

    A Review of Psychophysiological Measures to Assess Cognitive States in Real-World Driving

    Get PDF
    As driving functions become increasingly automated, motorists run the risk of becoming cognitively removed from the driving process. Psychophysiological measures may provide added value not captured through behavioral or self-report measures alone. This paper provides a selective review of the psychophysiological measures that can be utilized to assess cognitive states in real-world driving environments. First, the importance of psychophysiological measures within the context of traffic safety is discussed. Next, the most commonly used physiology-based indices of cognitive states are considered as potential candidates relevant for driving research. These include: electroencephalography and event-related potentials, optical imaging, heart rate and heart rate variability, blood pressure, skin conductance, electromyography, thermal imaging, and pupillometry. For each of these measures, an overview is provided, followed by a discussion of the methods for measuring it in a driving context. Drawing from recent empirical driving and psychophysiology research, the relative strengths and limitations of each measure are discussed to highlight each measures' unique value. Challenges and recommendations for valid and reliable quantification from lab to (less predictable) real-world driving settings are considered. Finally, we discuss measures that may be better candidates for a near real-time assessment of motorists' cognitive states that can be utilized in applied settings outside the lab. This review synthesizes the literature on in-vehicle psychophysiological measures to advance the development of effective human-machine driving interfaces and driver support systems

    Brain dynamic states analysis based on 3D convolutional neural network

    Full text link
    © 2017 IEEE. Drowsiness driving is one major factor of traffic accident. Monitoring the changes of brain signals provides an effective and direct way for drowsiness detection. One 3D convolutional neural network (3D CNN)-based forecasting system has been proposed to monitor electroencephalography (EEG) signals and predict fatigue level during driving. The limited weight sharing and channel-wise convolution were both applied to extract the significant phenomenon in various frequency bands of brain signals and the spatial information of EEG channel location, respectively. The proposed 3D CNN with limited weight sharing and channel-wise convolution has been demonstrated to predict reaction time (RT) of driving with low root mean square error (RMSE) through the brain dynamics. This proposed approach outperforms with the state-of-the-art algorithms, such as traditional CNN, Neural Network (NN), and support vector regression (SVR). Compared with traditional CNN and Artificial Neural Network, the RMSE of 3D CNN-based RT prediction has been improved 9.5% (RMSE from 0.6322 to 0.5720) and 8% (RMSE from 0.6217 to 0.5720), respectively. We envision that this study might open a new branch between deep learning application in neuro-cognitive analysis and real world application
    corecore