31,869 research outputs found

    From “Oh, OK” to “Ah, yes” to “Aha!”: Hyper-systemizing and the rewards of insight\ud

    Get PDF
    Hyper-systemizers are individuals displaying an unusually strong bias toward systemizing, i.e. toward explaining events and solving problems by appeal to mechanisms that do not involve intentions or agency. Hyper-systemizing in combination with deficit mentalizing ability typically presents clinically as an autistic spectrum disorder; however, the development of hyper-systemizing in combination with normal-range mentalizing ability is not well characterized. Based on a review and synthesis of clinical, observational, experimental, and neurofunctional studies, it is hypothesized that repeated episodes of insightful problem solving by systemizing result in attentional and motivational sensitization toward further systemizing via progressive and chronic deactivation of the default network. This hypothesis is distinguished from alternatives, and its correlational and causal implications are discussed. Predictions of the default-deactivation model accessible to survey-based instruments, standard cognitive measures and neurofunctional methods are outlined, and evidence pertaining to them considered

    Adaptive Resonance: An Emerging Neural Theory of Cognition

    Full text link
    Adaptive resonance is a theory of cognitive information processing which has been realized as a family of neural network models. In recent years, these models have evolved to incorporate new capabilities in the cognitive, neural, computational, and technological domains. Minimal models provide a conceptual framework, for formulating questions about the nature of cognition; an architectural framework, for mapping cognitive functions to cortical regions; a semantic framework, for precisely defining terms; and a computational framework, for testing hypotheses. These systems are here exemplified by the distributed ART (dART) model, which generalizes localist ART systems to allow arbitrarily distributed code representations, while retaining basic capabilities such as stable fast learning and scalability. Since each component is placed in the context of a unified real-time system, analysis can move from the level of neural processes, including learning laws and rules of synaptic transmission, to cognitive processes, including attention and consciousness. Local design is driven by global functional constraints, with each network synthesizing a dynamic balance of opposing tendencies. The self-contained working ART and dART models can also be transferred to technology, in areas that include remote sensing, sensor fusion, and content-addressable information retrieval from large databases.Office of Naval Research and the defense Advanced Research Projects Agency (N00014-95-1-0409, N00014-1-95-0657); National Institutes of Health (20-316-4304-5

    Adaptive Resonance Theory

    Full text link
    SyNAPSE program of the Defense Advanced Projects Research Agency (Hewlett-Packard Company, subcontract under DARPA prime contract HR0011-09-3-0001, and HRL Laboratories LLC, subcontract #801881-BS under DARPA prime contract HR0011-09-C-0001); CELEST, an NSF Science of Learning Center (SBE-0354378

    Being-in-the-world-with: Presence Meets Social And Cognitive Neuroscience

    Get PDF
    In this chapter we will discuss the concepts of “presence” (Inner Presence) and “social presence” (Co-presence) within a cognitive and ecological perspective. Specifically, we claim that the concepts of “presence” and “social presence” are the possible links between self, action, communication and culture. In the first section we will provide a capsule view of Heidegger’s work by examining the two main features of the Heideggerian concept of “being”: spatiality and “being with”. We argue that different visions from social and cognitive sciences – Situated Cognition, Embodied Cognition, Enactive Approach, Situated Simulation, Covert Imitation - and discoveries from neuroscience – Mirror and Canonical Neurons - have many contact points with this view. In particular, these data suggest that our conceptual system dynamically produces contextualized representations (simulations) that support grounded action in different situations. This is allowed by a common coding – the motor code – shared by perception, action and concepts. This common coding also allows the subject for natively recognizing actions done by other selves within the phenomenological contents. In this picture we argue that the role of presence and social presence is to allow the process of self-identification through the separation between “self” and “other,” and between “internal” and “external”. Finally, implications of this position for communication and media studies are discussed by way of conclusion

    The Ouroboros Model

    Get PDF
    At the core of the Ouroboros Model lies a self-referential recursive process with alternating phases of data acquisition and evaluation. Memory entries are organized in schemata. Activation at a time of part of a schema biases the whole structure and, in particular, missing features, thus triggering expectations. An iterative recursive monitor process termed ‘consumption analysis’ is then checking how well such expectations fit with successive activations. A measure for the goodness of fit, “emotion”, provides feedback as (self-) monitoring signal. Contradictions between anticipations based on previous experience and actual current data are highlighted as well as minor gaps and deficits. The basic algorithm can be applied to goal directed movements as well as to abstract rational reasoning when weighing evidence for and against some remote theories. A sketch is provided how the Ouroboros Model can shed light on rather different characteristics of human behavior including learning and meta-learning. Partial implementations proved effective in dedicated safety systems

    The evolutionary origins of volition

    Get PDF
    It appears to be a straightforward implication of distributed cognition principles that there is no integrated executive control system (e.g. Brooks 1991, Clark 1997). If distributed cognition is taken as a credible paradigm for cognitive science this in turn presents a challenge to volition because the concept of volition assumes integrated information processing and action control. For instance the process of forming a goal should integrate information about the available action options. If the goal is acted upon these processes should control motor behavior. If there were no executive system then it would seem that processes of action selection and performance couldn’t be functionally integrated in the right way. The apparently centralized decision and action control processes of volition would be an illusion arising from the competitive and cooperative interaction of many relatively simple cognitive systems. Here I will make a case that this conclusion is not well-founded. Prima facie it is not clear that distributed organization can achieve coherent functional activity when there are many complex interacting systems, there is high potential for interference between systems, and there is a need for focus. Resolving conflict and providing focus are key reasons why executive systems have been proposed (Baddeley 1986, Norman and Shallice 1986, Posner and Raichle 1994). This chapter develops an extended theoretical argument based on this idea, according to which selective pressures operating in the evolution of cognition favor high order control organization with a ‘highest-order’ control system that performs executive functions

    Mine and me: exploring the neural basis of object ownership.

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available
    corecore