1,745 research outputs found

    Hacia el modelado 3d de tumores cerebrales mediante endoneurosonografía y redes neuronales

    Get PDF
    Las cirugías mínimamente invasivas se han vuelto populares debido a que implican menos riesgos con respecto a las intervenciones tradicionales. En neurocirugía, las tendencias recientes sugieren el uso conjunto de la endoscopia y el ultrasonido, técnica llamada endoneurosonografía (ENS), para la virtualización 3D de las estructuras del cerebro en tiempo real. La información ENS se puede utilizar para generar modelos 3D de los tumores del cerebro durante la cirugía. En este trabajo, presentamos una metodología para el modelado 3D de tumores cerebrales con ENS y redes neuronales. Específicamente, se estudió el uso de mapas auto-organizados (SOM) y de redes neuronales tipo gas (NGN). En comparación con otras técnicas, el modelado 3D usando redes neuronales ofrece ventajas debido a que la morfología del tumor se codifica directamente sobre los pesos sinápticos de la red, no requiere ningún conocimiento a priori y la representación puede ser desarrollada en dos etapas: entrenamiento fuera de línea y adaptación en línea. Se realizan pruebas experimentales con maniquíes médicos de tumores cerebrales. Al final del documento, se presentan los resultados del modelado 3D a partir de una base de datos ENS.Minimally invasive surgeries have become popular because they reduce the typical risks of traditional interventions. In neurosurgery, recent trends suggest the combined use of endoscopy and ultrasound (endoneurosonography or ENS) for 3D virtualization of brain structures in real time. The ENS information can be used to generate 3D models of brain tumors during a surgery. This paper introduces a methodology for 3D modeling of brain tumors using ENS and unsupervised neural networks. The use of self-organizing maps (SOM) and neural gas networks (NGN) is particularly studied. Compared to other techniques, 3D modeling using neural networks offers advantages, since tumor morphology is directly encoded in synaptic weights of the network, no a priori knowledge is required, and the representation can be developed in two stages: off-line training and on-line adaptation. Experimental tests were performed using virtualized phantom brain tumors. At the end of the paper, the results of 3D modeling from an ENS database are presented

    Critical Survey of Different Clustering Algorithm for Effective Tumor Detection

    Get PDF
    this paper provides a critical survey of different clustering algorithm for effective tumor detection. There are many tumor detection techniques. Today the brain tumor segmentation is one of the challenging tasks. This paper compare the technique on the basis of accuracy, precision, recall, algorithm complexity and time. The main focus is on techniques- K-Mean, Fuzzy C-Mean, KIFCM, and EM methods

    Machine Learning Algorithm for Early Detection and Analysis of Brain Tumors Using MRI Images

    Get PDF
    Among the human body's organs, the brain is the most delicate and specialized. It is proven that after the heart stops then also brain death occurs within 3 to 5 minutes of death or within 3 to 5 minutes of loss of oxygen supply. A brain tumor is a life-threatening disease that can be detected at any age from an infant to an old person. Though a lot of people did research in the detection and analysis of a tumor, but then also detecting tumors at the early phase is still a much more arduous field in the biomedical study. This paper focuses on the comparative study of various existing algorithms in this field. This paper addresses the challenges and some issues in MRI brain tumor detection which are also addressed in this research

    AUTOMATIC BRAIN TUMOR SEGMENTATION WITH K-MEANS, FUZZY C-MEANS, SELF-ORGANIZING MAP AND OTSU METHODS

    Get PDF
    AutomatIc BraIn Tumor SegmentatIon wIth K-Means, Fuzzy C-Means, Self-Organizing Map and Otsu MethodsAbstractThe human brain is an amazing organ of the human nervous system and controls all functions of our body. Brain tumors emerge from a mass of abnormal cells in the brain, and catching tumors early often allows for more treatment options. For diagnosing brain tumors, it has been benefited mostly from magnetic resonance images. In this study, we have developed the segmentation systems using the methods as K-Means, Fuzzy C-Means, Self-Organizing Map, Otsu, and the hybrid method of them, and evaluated the methods according to their success rates of segmentation. The developed systems, which take the brain image of MRI as input, perform skull stripping, preprocessing, and segmentation is performed using the clustering algorithms as K-Means, Fuzzy C-Means, Self-Organizing Map and Otsu Methods. Before preprocessing, the skull region is removed from the images in the MRI brain image data set. In preprocessing, the quality of the brain images is enhanced and the noise of the images is removed by some various filtering and morphological techniques. Finally, with the clustering and thresholding techniques, the tumor area of the brain is detected, and then the systems of the segmentation have been evaluated and compared with each other according to accuracy, true positive rate, and true negative rate.Keywords: Brain Tumor Segmentation, Medical Imaging, Fuzzy C-Means, K-Means, Self-Organizing Map, Otsu MethodBulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemelİ Ağ VE Otsu Metot İLE BEYİN TÜMÖRÜ SEGMENTASYONU Özetİnsan beyni, insan sinir sisteminin en önemli organıdır ve vücudumuzun tamamını kontrol eder. Beyin tümörleri beyindeki normal olmayan hücrelerden oluşur ve tümörleri erken tespit etmek birçok tedavi seçeneklerinin uygulanmasına olanak sağlar. Beyin tümörlerinin teşhisi için çoğunlukla manyetik rezonans görüntülerinden yararlanılmıştır. Bu çalışmada, Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu Metot ve bu metotların birleşiminden oluşan hibrid metotlar kullanılarak beyin tümör segmentasyon sistemleri geliştirilmiştir. Bu metotların segmentasyon başarı oranları tespit edilmiş ve birbirleriyle karşılaştırılmıştır. Geliştirilen sistemlerde, ilk olarak MRI beyin görüntülerini girdi olarak alınır, sonra kafatası bölgesinin görüntüden ayrılması, önişleme ve Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu metot gibi algoritmalarla segmentasyon işlemleri uygulanır. Önişlemden önce, kafatası bölgesi, MRI beyin görüntüsü veri setindeki görüntülerden çıkarılır. Ön işlemede, beyin görüntülerinin kalitesi iyileştirilir ve görüntülerin gürültüsü, çeşitli filtreleme ve morfolojik tekniklerle kaldırılır. Son olarak, kümeleme ve eşikleme teknikleri ile beynin tümör bölgesi tespit edildi. Daha sonra, segmentasyon sistemleri değerlendirildi ve doğruluk, gerçek pozitif oranı ve gerçek negatif oranına göre birbirleriyle karşılaştırıldı.Anahtar Kelimeler: Beyin Tümörü Segmentasyonu, Tıbbi Görüntüleme, Bulanık C-Ortalamalar, K-Ortalamalar, Özdüzenlemeli Ağ, Otsu Meto

    An Efficient Hybrid Fuzzy-Clustering Driven 3D-Modeling of Magnetic Resonance Imagery for Enhanced Brain Tumor Diagnosis

    Get PDF
    Brain tumor detection and its analysis are essential in medical diagnosis. The proposed work focuses on segmenting abnormality of axial brain MR DICOM slices, as this format holds the advantage of conserving extensive metadata. The axial slices presume the left and right part of the brain is symmetric by a Line of Symmetry (LOS). A semi-automated system is designed to mine normal and abnormal structures from each brain MR slice in a DICOM study. In this work, Fuzzy clustering (FC) is applied to the DICOM slices to extract various clusters for di erent k. Then, the best-segmented image that has high inter-class rigidity is obtained using the silhouette fitness function. The clustered boundaries of the tissue classes further enhanced by morphological operations. The FC technique is hybridized with the standard image post-processing techniques such as marker controlled watershed segmentation (MCW), region growing (RG), and distance regularized level sets (DRLS). This procedure is implemented on renowned BRATS challenge dataset of di erent modalities and a clinical dataset containing axial T2 weighted MR images of a patient. The sequential analysis of the slices is performed using the metadata information present in the DICOM header. The validation of the segmentation procedures against the ground truth images authorizes that the segmented objects of DRLS through FC enhanced brain images attain maximum scores of Jaccard and Dice similarity coe cients. The average Jaccard and dice scores for segmenting tumor part for ten patient studies of the BRATS dataset are 0.79 and 0.88, also for the clinical study 0.78 and 0.86, respectively. Finally, 3D visualization and tumor volume estimation are done using accessible DICOM information.Ministerio de Desarrollo de Recursos Humanos, India SPARC/2018-2019/P145/SLUniversidad Politécnica de Tomsk, Rusia RRSG/19/500
    corecore