187 research outputs found

    CAIPI in Practice: Towards Explainable Interactive Medical Image Classification

    Full text link
    Would you trust physicians if they cannot explain their decisions to you? Medical diagnostics using machine learning gained enormously in importance within the last decade. However, without further enhancements many state-of-the-art machine learning methods are not suitable for medical application. The most important reasons are insufficient data set quality and the black-box behavior of machine learning algorithms such as Deep Learning models. Consequently, end-users cannot correct the model's decisions and the corresponding explanations. The latter is crucial for the trustworthiness of machine learning in the medical domain. The research field explainable interactive machine learning searches for methods that address both shortcomings. This paper extends the explainable and interactive CAIPI algorithm and provides an interface to simplify human-in-the-loop approaches for image classification. The interface enables the end-user (1) to investigate and (2) to correct the model's prediction and explanation, and (3) to influence the data set quality. After CAIPI optimization with only a single counterexample per iteration, the model achieves an accuracy of 97.48%97.48\% on the Medical MNIST and 95.02%95.02\% on the Fashion MNIST. This accuracy is approximately equal to state-of-the-art Deep Learning optimization procedures. Besides, CAIPI reduces the labeling effort by approximately 80%80\%.Comment: Manuscript accepted at IFIP AIAI 202

    Four Ways to Evaluate Arguments According to Agent Engagement

    Get PDF
    International audienceIn this paper we are interested in the computational and formal analysis of the persuasive impact that an argument can have on a human. We present a preliminary account of the listener mental process (representation and reasoning mechanisms of the dual process cognitive model) as well as her engagement based on the ELM model. This engagement determines the reasoning process that the agent will adopt in order to evaluate and incorporate the uttered argument

    Visualisation Methods of Hierarchical Biological Data: A Survey and Review

    Get PDF
    The sheer amount of high dimensional biomedical data requires machine learning, and advanced data visualization techniques to make the data understandable for human experts. Most biomedical data today is in arbitrary high dimensional spaces, and is not directly accessible to the human expert for a visual and interactive analysis process. To cope with this challenge, the application of machine learning and knowledge extraction methods is indispensable throughout the entire data analysis workflow. Nevertheless, human experts need to understand and interpret the data and experimental results. Appropriate understanding is typically supported by visualizing the results adequately, which is not a simple task. Consequently, data visualization is one of the most crucial steps in conveying biomedical results. It can and should be considered as a critical part of the analysis pipeline. Still as of today, 2D representations dominate, and human perception is limited to this lower dimension to understand the data. This makes the visualization of the results in an understandable and comprehensive manner a grand challenge. This paper reviews the current state of visualization methods in a biomedical context. It focuses on hierarchical biological data as a source for visualization, and gives a comprehensiv

    Cohesion, commonality and creativity: youth work across borders

    Get PDF
    No abstract available

    Machine Learning for Biomedical Application

    Get PDF
    Biomedicine is a multidisciplinary branch of medical science that consists of many scientific disciplines, e.g., biology, biotechnology, bioinformatics, and genetics; moreover, it covers various medical specialties. In recent years, this field of science has developed rapidly. This means that a large amount of data has been generated, due to (among other reasons) the processing, analysis, and recognition of a wide range of biomedical signals and images obtained through increasingly advanced medical imaging devices. The analysis of these data requires the use of advanced IT methods, which include those related to the use of artificial intelligence, and in particular machine learning. It is a summary of the Special Issue “Machine Learning for Biomedical Application”, briefly outlining selected applications of machine learning in the processing, analysis, and recognition of biomedical data, mostly regarding biosignals and medical images

    Automatic Screening and Classification of Diabetic Retinopathy Eye Fundus Image

    Get PDF
    Diabetic Retinopathy (DR) is a disorder of the retinal vasculature. It develops to some degree in nearly all patients with long-standing diabetes mellitus and can result in blindness. Screening of DR is essential for both early detection and early treatment. This thesis aims to investigate automatic methods for diabetic retinopathy detection and subsequently develop an effective system for the detection and screening of diabetic retinopathy. The presented diabetic retinopathy research involves three development stages. Firstly, the thesis presents the development of a preliminary classification and screening system for diabetic retinopathy using eye fundus images. The research will then focus on the detection of the earliest signs of diabetic retinopathy, which are the microaneurysms. The detection of microaneurysms at an early stage is vital and is the first step in preventing diabetic retinopathy. Finally, the thesis will present decision support systems for the detection of diabetic retinopathy and maculopathy in eye fundus images. The detection of maculopathy, which are yellow lesions near the macula, is essential as it will eventually cause the loss of vision if the affected macula is not treated in time. An accurate retinal screening, therefore, is required to assist the retinal screeners to classify the retinal images effectively. Highly efficient and accurate image processing techniques must thus be used in order to produce an effective screening of diabetic retinopathy. In addition to the proposed diabetic retinopathy detection systems, this thesis will present a new dataset, and will highlight the dataset collection, the expert diagnosis process and the advantages of the new dataset, compared to other public eye fundus images datasets available. The new dataset will be useful to researchers and practitioners working in the retinal imaging area and would widely encourage comparative studies in the field of diabetic retinopathy research. It is envisaged that the proposed decision support system for clinical screening would greatly contribute to and assist the management and the detection of diabetic retinopathy. It is also hoped that the developed automatic detection techniques will assist clinicians to diagnose diabetic retinopathy at an early stage

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Role of Science Academies in the National System of Innovation

    Get PDF
    Proceedings ReportAcademies in the SADC region were offered an opportunity to host a half day workshop on Wednesday, 21 June in Ezulwini, Swaziland, to present to stakeholders in the SADC region. ASSAf coordinated the organisation of this meeting which was well attended by SADC Senior Officials and stakeholders from within Swaziland.Network of African Science Academies InterAcademy Partnership (IAP) Academy of Science of Mozambique Government of Swaziland Mauritius Academy of Science and Technology SADC Science, Technology and Innovation Desk Tanzania Academy of Sciences Zambia Academy of Sciences Zimbabwe Academy of Scienc

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial
    • …
    corecore