69 research outputs found

    Structural parameterizations for boxicity

    Full text link
    The boxicity of a graph GG is the least integer dd such that GG has an intersection model of axis-aligned dd-dimensional boxes. Boxicity, the problem of deciding whether a given graph GG has boxicity at most dd, is NP-complete for every fixed d2d \ge 2. We show that boxicity is fixed-parameter tractable when parameterized by the cluster vertex deletion number of the input graph. This generalizes the result of Adiga et al., that boxicity is fixed-parameter tractable in the vertex cover number. Moreover, we show that boxicity admits an additive 11-approximation when parameterized by the pathwidth of the input graph. Finally, we provide evidence in favor of a conjecture of Adiga et al. that boxicity remains NP-complete when parameterized by the treewidth.Comment: 19 page

    Boxicity of Series Parallel Graphs

    Get PDF
    The three well-known graph classes, planar graphs (P), series-parallel graphs(SP) and outer planar graphs(OP) satisfy the following proper inclusion relation: OP C SP C P. It is known that box(G) <= 3 if G belongs to P and box(G) <= 2 if G belongs to OP. Thus it is interesting to decide whether the maximum possible value of the boxicity of series-parallel graphs is 2 or 3. In this paper we construct a series-parallel graph with boxicity 3, thus resolving this question. Recently Chandran and Sivadasan showed that for any G, box(G) <= treewidth(G)+2. They conjecture that for any k, there exists a k-tree with boxicity k+1. (This would show that their upper bound is tight but for an additive factor of 1, since the treewidth of any k-tree equals k.) The series-parallel graph we construct in this paper is a 2-tree with boxicity 3 and is thus a first step towards proving their conjecture.Comment: 10 pages, 0 figure

    Boxicity and Cubicity of Asteroidal Triple free graphs

    Get PDF
    An axis parallel dd-dimensional box is the Cartesian product R1×R2×...×RdR_1 \times R_2 \times ... \times R_d where each RiR_i is a closed interval on the real line. The {\it boxicity} of a graph GG, denoted as \boxi(G), is the minimum integer dd such that GG can be represented as the intersection graph of a collection of dd-dimensional boxes. An axis parallel unit cube in dd-dimensional space or a dd-cube is defined as the Cartesian product R1×R2×...×RdR_1 \times R_2 \times ... \times R_d where each RiR_i is a closed interval on the real line of the form [ai,ai+1][a_i,a_i + 1]. The {\it cubicity} of GG, denoted as \cub(G), is the minimum integer dd such that GG can be represented as the intersection graph of a collection of dd-cubes. Let S(m)S(m) denote a star graph on m+1m+1 nodes. We define {\it claw number} of a graph GG as the largest positive integer kk such that S(k)S(k) is an induced subgraph of GG and denote it as \claw. Let GG be an AT-free graph with chromatic number χ(G)\chi(G) and claw number \claw. In this paper we will show that \boxi(G) \leq \chi(G) and this bound is tight. We also show that \cub(G) \leq \boxi(G)(\ceil{\log_2 \claw} +2) \leq \chi(G)(\ceil{\log_2 \claw} +2). If GG is an AT-free graph having girth at least 5 then \boxi(G) \leq 2 and therefore \cub(G) \leq 2\ceil{\log_2 \claw} +4.Comment: 15 pages: We are replacing our earlier paper regarding boxicity of permutation graphs with a superior result. Here we consider the boxicity of AT-free graphs, which is a super class of permutation graph

    Boxicity and separation dimension

    Full text link
    A family F\mathcal{F} of permutations of the vertices of a hypergraph HH is called 'pairwise suitable' for HH if, for every pair of disjoint edges in HH, there exists a permutation in F\mathcal{F} in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for HH is called the 'separation dimension' of HH and is denoted by π(H)\pi(H). Equivalently, π(H)\pi(H) is the smallest natural number kk so that the vertices of HH can be embedded in Rk\mathbb{R}^k such that any two disjoint edges of HH can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph HH is equal to the 'boxicity' of the line graph of HH. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to WG-2014. Some results proved in this paper are also present in arXiv:1212.6756. arXiv admin note: substantial text overlap with arXiv:1212.675

    Boxicity and topological invariants

    Full text link
    The boxicity of a graph G=(V,E)G=(V,E) is the smallest integer kk for which there exist kk interval graphs Gi=(V,Ei)G_i=(V,E_i), 1ik1 \le i \le k, such that E=E1EkE=E_1 \cap \cdots \cap E_k. In the first part of this note, we prove that every graph on mm edges has boxicity O(mlogm)O(\sqrt{m \log m}), which is asymptotically best possible. We use this result to study the connection between the boxicity of graphs and their Colin de Verdi\`ere invariant, which share many similarities. Known results concerning the two parameters suggest that for any graph GG, the boxicity of GG is at most the Colin de Verdi\`ere invariant of GG, denoted by μ(G)\mu(G). We observe that every graph GG has boxicity O(μ(G)4(logμ(G))2)O(\mu(G)^4(\log \mu(G))^2), while there are graphs GG with boxicity Ω(μ(G)logμ(G))\Omega(\mu(G)\sqrt{\log \mu(G)}). In the second part of this note, we focus on graphs embeddable on a surface of Euler genus gg. We prove that these graphs have boxicity O(glogg)O(\sqrt{g}\log g), while some of these graphs have boxicity Ω(glogg)\Omega(\sqrt{g \log g}). This improves the previously best known upper and lower bounds. These results directly imply a nearly optimal bound on the dimension of the adjacency poset of graphs on surfaces.Comment: 6 page
    corecore