

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 306 (2006) 2219-2221

www.elsevier.com/locate/disc

Note

Boxicity of series-parallel graphs

Ankur Bohra^a, L. Sunil Chandran^{b,*}, J. Krishnam Raju^b

^aDepartment of Mathematics, Indian Institute of Technology, Delhi 110016, India ^bDepartment of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India

Received 24 September 2005; received in revised form 23 March 2006; accepted 21 April 2006 Available online 11 July 2006

Abstract

We show that there exist series-parallel graphs with boxicity 3. \tilde{O} 2006 Elsevier B.V. All rights reserved.

Keywords: Boxicity; Series-parallel graphs; K-tress

1. Introduction

Let $\mathscr{F} = \{S_x \subseteq U : x \in V\}$ be a family of subsets of a universe U, where V is an index set. The intersection graph $\Omega(\mathscr{F})$ of \mathscr{F} has V as a vertex set, and two distinct vertices x and y are adjacent if and only if $S_x \cap S_y \neq \emptyset$. A k-dimensional box is a Cartesian product $R_1 \times R_2 \times \cdots \times R_k$ where R_i (for $1 \le i \le k$) is a closed interval of the form $[a_i, b_i]$ on the real line. For a graph G, its boxicity is the minimum dimension k, such that there exists a family \mathscr{F} of k-dimensional axis-parallel boxes with $\Omega(\mathscr{F}) = G$. We denote the boxicity of a graph G by box(G). The notion of boxicity was introduced by Roberts [3] and has since been studied by many authors. The complexity of finding the boxicity of a graph was shown to be NP-hard by Cozzens. This was later improved by Yannakakis and finally by Kratochvil [2] who showed that deciding whether the boxicity of a graph is at most 2 itself is NP-complete.

The three well-known graph classes, planar graphs(\mathscr{P}), series-parallel graphs ($\mathscr{P}\mathscr{P}$) and outer planar graphs($\mathscr{O}\mathscr{P}$) satisfy the following proper inclusion relation: $\mathscr{O}\mathscr{P} \subset \mathscr{P}\mathscr{P} \subset \mathscr{P}$. It is known that $box(G) \leq 3$ if $G \in \mathscr{P}$ [5] and $box(G) \leq 2$ if $G \in \mathscr{O}\mathscr{P}$ [4]. Thus it is interesting to decide whether there exist series-parallel graphs of boxicity 3. In this paper we construct a series-parallel graph with boxicity 3, thus resolving this question. Recently Chandran and Sivadasan [1] showed that for any G, $box(G) \leq treewidth(G) + 2$. They conjecture that for any k, there exists a k-tree with boxicity k + 1. (This would show that their bound is tight but for an additive factor of 1.) The conjecture is trivial for k = 1. The series-parallel graph we construct in this paper is a 2-tree with boxicity 3 and thus we verify the conjecture for k = 2. (The reader may note that a graph is a series-parallel graph if and only if it is the subgraph of a 2-tree.)

^{*} Corresponding author. E-mail addresses: mau02481@ccsun50.iitd.ernet.in (A. Bohra), sunil@csa.iisc.ernet.in (L.S. Chandran), jkraju@csa.iisc.ernet.in (J.K. Raju).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.04.014

2. The construction

The class of undirected graphs known as 2-trees is defined recursively as follows: A 2-tree on 3 vertices is a clique on 3 vertices. Given any 2-tree T_n on n vertices $(n \ge 3)$ we construct a 2-tree on n + 1 vertices by applying a *split operation* on an edge (a, b) of T_n . A split operation on (a, b) is the addition of a new vertex c and two new edges (a, c)and (b, c) to T_n . We say that vertex c is obtained by splitting (a, b). When describing our constructions, we use the assignment statement c = split(a, b) to indicate that a split operation is performed on the edge (a, b) to obtain the new vertex c.

I = (V, E) is an interval graph if and only if there exists a function Π that maps each vertex $u \in V$ to a closed interval of the form [l(u), r(u)] on the real line such that $(u, v) \in E(I) \iff \Pi(u) \cap \Pi(v) \neq \emptyset$. We will call Π , an interval representation of I. In a similar way, a rectangle representation of G = (V, E) is a function θ that maps each vertex $v \in V(G)$ to a 2-dimensional axis parallel box $R_1 \times R_2$, where R_i , for $1 \leq i \leq 2$, is a closed interval of the form $[a_i, b_i]$ on the real line, such that $(u, v) \in E(G) \iff \theta(u) \cap \theta(v) \neq \emptyset$. Let Π_i be the function that maps $u \in V(G)$ to R_i . Then we write $\theta = (\Pi_1, \Pi_2)$. (Note that $\Pi_i(u)$ represents the projection of the box $\theta(u)$ on the *i*th axis.)

Before presenting the construction of the 2-tree with boxicity 3, we present four simpler graphs which occur as subgraphs of the final 2-tree, to facilitate the presentation of the proof. To construct each of the following graphs, we start with a single edge (a, b) and then perform a few split operations:

- 1. The graph L_1 : c = split(a, b); add a pendant vertex *z* to *c*.
- 2. The graph $L_2: c := split(a, b); x = split(a, c); y := split(b, c).$
- 3. The graph L_3 : For i = 1-5 do: $c_i = split(a, b); x_i = split(a, c_i); y_i = split(b, c_i).$
- 4. The graph L_4 : The graph L_4 is obtained from L_3 by splitting the edge (x_i, c_i) to obtain z_i for $1 \le i \le 5$.

First we collect some lemmas regarding the rectangle representations of the above graphs. The first two lemmas are trivial and we leave the proofs to the reader.

Lemma 1. Let θ be a rectangle representation of L_1 . Then $\theta(c) \not\subseteq \theta(a) \cup \theta(b)$.

Lemma 2. Let θ be a rectangle representation of L_2 , Then $\theta(c) \cap (\theta(a) - \theta(b)) \neq \emptyset$ and $\theta(c) \cap (\theta(b) - \theta(a)) \neq \emptyset$.

Lemma 3. Let $\theta = (\Pi_1, \Pi_2)$ be a rectangle representation of a graph G. If $\theta(c) \cap (\theta(a) - \theta(b)) \neq \emptyset$ then at least one of the following two conditions holds. (1) $\Pi_1(c) \cap (\Pi_1(a) - \Pi_1(b)) \neq \emptyset$, (2) $\Pi_2(c) \cap (\Pi_2(a) - \Pi_2(b)) \neq \emptyset$.

Proof. If $\theta(c) \cap (\theta(a) - \theta(b)) \neq \emptyset$ then $\theta(c) \cap \theta(a) \nsubseteq \theta(b)$, which implies $\Pi(a) \cap \Pi(c) \nsubseteq \Pi(b)$, for some $\Pi \in \{\Pi_1, \Pi_2\}$, and the lemma follows. \Box

Lemma 4. Let $\{a, b, c\}$ induce a triangle with representation $\theta = (\Pi_1, \Pi_2)$. If $\Pi_i(c) \notin \Pi_i(a) \cap \Pi_i(b)$ for i = 1, 2, then $\theta(c)$ contains a corner point of $\theta(a) \cap \theta(b)$. (If $\theta(a) \cap \theta(b)$ is a point or a line segment the corners may be taken to overlap.)

Proof. Clearly $\theta(c) \cap (\theta(a) \cap \theta(b)) \neq \emptyset$ and therefore for $i = 1, 2, \Pi_i(c) \cap \Pi_i(a) \cap \Pi_i(b) \neq \emptyset$. Combining this with the assumption $\Pi_i(c) \not\subseteq \Pi_i(a) \cap \Pi_i(b)$, we can infer that $\Pi_i(c)$ contains either the left end point or the right end point of $\Pi_i(a) \cap \Pi_i(b)$, for i = 1, 2. Thus we conclude that $\theta(c) = \Pi_1(c) \times \Pi_2(c)$ contains at least one corner point of $\theta(a) \cap \theta(b)$. \Box

Definition 1. Let $\theta = (\Pi_1, \Pi_2)$ be a rectangle representation of *G*. We say that two vertices $u, v \in V(G)$ are a *crossing pair* with respect to θ if and only if $\Pi_1(u) \subseteq \Pi_1(v)$ and $\Pi_2(v) \subseteq \Pi_2(u)$.

Lemma 5. Let $\theta = (\Pi_1, \Pi_2)$ be any rectangle representation of L_3 . Then *a*, *b* cannot be a crossing pair with respect to θ .

Proof. Suppose *a*, *b* be a crossing pair. Then we have $\Pi_1(a) \subseteq \Pi_1(b)$ and $\Pi_2(b) \subseteq \Pi_2(a)$. Now observe that for each $i, 1 \leq i \leq 5, a, b, c_i, x_i, y_i$ induce a subgraph isomorphic to L_2 . Hence by Lemma 2, we have $\theta(c_i) \cap (\theta(a) - \theta(b)) \neq \emptyset$ and $\theta(c_i) \cap (\theta(b) - \theta(a)) \neq \emptyset$. From $\theta(c_i) \cap (\theta(a) - \theta(b)) \neq \emptyset$ we can infer (by applying Lemma 3) that at least one of the following two conditions hold:

- (a) $\Pi_1(c_i) \cap (\Pi_1(a) \Pi_1(b)) \neq \emptyset$,
- (b) $\Pi_2(c_i) \cap (\Pi_2(a) \Pi_2(b)) \neq \emptyset$.

But since $\Pi_1(a) \subseteq \Pi_1(b)$ we have $\Pi_1(c_i) \cap (\Pi_1(a) - \Pi_1(b)) = \emptyset$. Thus we infer that $\Pi_2(c_i) \cap (\Pi_2(a) - \Pi_2(b)) \neq \emptyset$. It follows that $\Pi_2(c_i) \nsubseteq \Pi_2(a) \cap \Pi_2(b)$. Similarly we can infer that $\Pi_1(c_i) \nsubseteq \Pi_1(a) \cap \Pi_1(b)$. Therefore by Lemma 4, for each $i, 1 \le i \le 5, \theta(c_i)$ contains a *corner point* of $\theta(a) \cap \theta(b)$. But since there are only at most 4 corner points, by pigeon hole principle there exist i, j where $1 \le i, j \le 5$ and $i \ne j$ such that $\theta(c_i)$ and $\theta(c_j)$ contain the same corner point, i.e. $\theta(c_i) \cap \theta(c_j) \ne \emptyset$, a contradiction since $(c_i, c_j) \notin E(L_3)$. \Box

Lemma 6. Let $\theta = (\Pi_1, \Pi_2)$ be a rectangle representation of L_4 . Then there exists $c \in \{c_i : 1 \le i \le 5\}$ such that either *a*, *c* or *b*, *c* is a crossing pair.

Proof. We claim that there exists a $c \in \{c_i : 1 \le i \le 5\}$ such that $\Pi_1(c) \subseteq \Pi_1(a) \cap \Pi_1(b)$ or $\Pi_2(c) \subseteq \Pi_2(a) \cap \Pi_2(b)$. Suppose not. Then by Lemma 4, for each $i, 1 \le i \le 5, \theta(c_i)$ contains a *corner point* of $\theta(a) \cap \theta(b)$. This leads to a contradiction since there are only at most four corner points for $\theta(a) \cap \theta(b)$ and since $\theta(c_i), 1 \le i \le 5$ are pairwise disjoint by the Definition of L_4 . Therefore without loss of generality we can assume that $\Pi_1(c_1) \subseteq \Pi_1(a) \cap \Pi_1(b)$. Now $\{a, b, c_1, x_1, y_1\}$ induce a graph isomorphic to L_2 in L_4 . Therefore by Lemma 2, $\theta(c_1) \cap (\theta(a) - \theta(b)) \neq \emptyset$ and $\theta(c_1) \cap (\theta(b) - \theta(a)) \neq \emptyset$. By Lemma 3, $\theta(c_1) \cap (\theta(a) - \theta(b)) \neq \emptyset$ implies that at least one of the two conditions (a) $\Pi_1(c_1) \cap (\Pi_1(a) - \Pi_1(b)) \neq \emptyset$ (b) $\Pi_2(c_1) \cap (\Pi_2(a) - \Pi_2(b)) \neq \emptyset$ holds. But since $\Pi_1(c_1) \subseteq \Pi_1(a) \cap \Pi_1(b)$, we have $\Pi_1(c_1) \cap (\Pi_1(a) - \Pi_1(b)) = \emptyset$. Thus we infer that $\Pi_2(c_1) \cap (\Pi_2(a) - \Pi_2(b)) \neq \emptyset$. Similarly from $\theta(c_1) \cap (\theta(b) - \theta(a)) \neq \emptyset$ and $\Pi_2(c_1) \cap (\Pi_2(b) - \Pi_2(a)) \neq \emptyset$. Using these two inequalities (namely, $\Pi_2(c_1) \cap (\Pi_2(a) - \Pi_2(b)) \neq \emptyset$ and $\Pi_2(c_1) \cap (\Pi_2(b) - \Pi_2(a)) \neq \emptyset$ and recalling that $\Pi_2(a)$ and $\Pi_2(b)$ are intervals, it is easy to conclude that $\Pi_2(a) \cap \Pi_2(b) \subseteq \Pi_2(c_1) \cup (D_2(a) \cup \Pi_2(a) \sqcup \Pi_2(a) \sqcup \Pi_2(a) \sqcup \Pi_2(a) \sqcup \Pi_2(a) \cup \Pi_2(a) \sqcup \Pi_2(a) \sqcup$

Now we construct the final 2-tree G, and prove that its boxicity equals 3.

- 1. Let (a, b) be a single edge. For i = 1-5 do: $c_i = split(a, b)$.
- 2. For each c_i where $1 \le i \le 5$ do: For j = 1-5 do: $d_{ij} = split(a, c_i)$ and $e_{ij} = split(b, c_i)$.
- 3. For all i, j where $1 \le i, j \le 5$ do: $p_{ij} = split(a, d_{ij}); q_{ij} = split(c_i, d_{ij}); r_{ij} = split(b, e_{ij}); s_{ij} = split(c_i, e_{ij}).$

First we show that box(G) > 2. Suppose not. Then there exists a rectangle representation for *G*. Since $\{a, b\} \cup \{c_i, d_{i1}, e_{i1}, q_{i1} : 1 \le i \le 5\}$ induce a graph isomorphic to L_4 , by Lemma 6, there exists a $c \in \{c_i : 1 \le i \le 5\}$ such that either *a*, *c* or *b*, *c* is a *crossing pair*. Without loss of generality let *a*, c_1 be a *crossing pair*. But $\{a, c_1\} \cup \{d_{1j}, p_{1j}, q_{1j} : 1 \le j \le 5\}$, induce a graph isomorphic to L_3 . Thus by Lemma 5, *a*, c_1 cannot be a *crossing pair*, which is a contradiction. Thus we infer that box(G) > 2. Since any series-parallel graph is planar we have $box(G) \le 3$ [5] and the result follows.

References

- [1] L.S. Chandran, N. Sivadasan, Treewidth and boxicity, submitted for publication, Available at (http://arxiv.org/abs/math.CO/0505544), 2005.
- [2] J. Kratochvil, A special planar satisfiability problem and a consequence of its NP-completeness, Discrete Appl. Math. 52 (1994) 233–252.
- [3] F.S. Roberts, On the boxicity and cubicity of a graph, Recent Progresses in Combinatorics, Academic Press, New York, 1969.
- [4] E.R. Scheinerman, Intersection classes and multiple intersection parameters, Ph. D. Thesis, Princeton University, Princeton, 1984.
- [5] C. Thomassen, Interval representations of planar graphs, J. Combin. Theory Ser. B 40 (1986) 9-20.