Boxicity of series-parallel graphs

Ankur Bohra ${ }^{\text {a }}$, L. Sunil Chandran ${ }^{\text {b,* }}$, J. Krishnam Raju ${ }^{\text {b }}$
${ }^{\text {a Department of Mathematics, Indian Institute of Technology, Delhi 110016, India }}$
${ }^{\mathrm{b}}$ Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India

Received 24 September 2005; received in revised form 23 March 2006; accepted 21 April 2006
Available online 11 July 2006

Abstract

We show that there exist series-parallel graphs with boxicity 3 . © 2006 Elsevier B.V. All rights reserved.

Keywords: Boxicity; Series-parallel graphs; K-tress

1. Introduction

Let $\mathscr{F}=\left\{S_{x} \subseteq U: x \in V\right\}$ be a family of subsets of a universe U, where V is an index set. The intersection graph $\Omega(\mathscr{F})$ of \mathscr{F} has V as a vertex set, and two distinct vertices x and y are adjacent if and only if $S_{x} \cap S_{y} \neq \emptyset$. A k-dimensional box is a Cartesian product $R_{1} \times R_{2} \times \cdots \times R_{k}$ where R_{i} (for $1 \leqslant i \leqslant k$) is a closed interval of the form $\left[a_{i}, b_{i}\right]$ on the real line. For a graph G, its boxicity is the minimum dimension k, such that there exists a family \mathscr{F} of k-dimensional axis-parallel boxes with $\Omega(\mathscr{F})=G$. We denote the boxicity of a graph G by box (G). The notion of boxicity was introduced by Roberts [3] and has since been studied by many authors. The complexity of finding the boxicity of a graph was shown to be NP-hard by Cozzens. This was later improved by Yannakakis and finally by Kratochvil [2] who showed that deciding whether the boxicity of a graph is at most 2 itself is NP-complete.

The three well-known graph classes, planar graphs (\mathscr{P}), series-parallel graphs $(\mathscr{S} \mathscr{P})$ and outer planar graphs $(\mathcal{O P})$ satisfy the following proper inclusion relation: $\mathcal{O P} \subset \mathscr{S} \mathscr{P} \subset \mathscr{P}$. It is known that box $(G) \leqslant 3$ if $G \in \mathscr{P}$ [5] and $\operatorname{box}(G) \leqslant 2$ if $G \in \mathcal{O} \mathscr{P}$ [4]. Thus it is interesting to decide whether there exist series-parallel graphs of boxicity 3 . In this paper we construct a series-parallel graph with boxicity 3, thus resolving this question. Recently Chandran and Sivadasan [1] showed that for any $G, \operatorname{box}(G) \leqslant \operatorname{treewidth}(G)+2$. They conjecture that for any k, there exists a k-tree with boxicity $k+1$. (This would show that their bound is tight but for an additive factor of 1.) The conjecture is trivial for $k=1$. The series-parallel graph we construct in this paper is a 2 -tree with boxicity 3 and thus we verify the conjecture for $k=2$. (The reader may note that a graph is a series-parallel graph if and only if it is the subgraph of a 2 -tree.)

[^0]
2. The construction

The class of undirected graphs known as 2-trees is defined recursively as follows: A 2-tree on 3 vertices is a clique on 3 vertices. Given any 2-tree T_{n} on n vertices $(n \geqslant 3)$ we construct a 2 -tree on $n+1$ vertices by applying a split operation on an edge (a, b) of T_{n}. A split operation on (a, b) is the addition of a new vertex c and two new edges (a, c) and (b, c) to T_{n}. We say that vertex c is obtained by splitting (a, b). When describing our constructions, we use the assignment statement $c=\operatorname{split}(a, b)$ to indicate that a split operation is performed on the edge (a, b) to obtain the new vertex c.
$I=(V, E)$ is an interval graph if and only if there exists a function Π that maps each vertex $u \in V$ to a closed interval of the form $[l(u), r(u)]$ on the real line such that $(u, v) \in E(I) \Longleftrightarrow \Pi(u) \cap \Pi(v) \neq \emptyset$. We will call Π, an interval representation of I. In a similar way, a rectangle representation of $G=(V, E)$ is a function θ that maps each vertex $v \in V(G)$ to a 2-dimensional axis parallel box $R_{1} \times R_{2}$, where R_{i}, for $1 \leqslant i \leqslant 2$, is a closed interval of the form $\left[a_{i}, b_{i}\right]$ on the real line, such that $(u, v) \in E(G) \Longleftrightarrow \theta(u) \cap \theta(v) \neq \emptyset$. Let Π_{i} be the function that maps $u \in V(G)$ to R_{i}. Then we write $\theta=\left(\Pi_{1}, \Pi_{2}\right)$. (Note that $\Pi_{i}(u)$ represents the projection of the box $\theta(u)$ on the i th axis.)

Before presenting the construction of the 2-tree with boxicity 3, we present four simpler graphs which occur as subgraphs of the final 2-tree, to facilitate the presentation of the proof. To construct each of the following graphs, we start with a single edge (a, b) and then perform a few split operations:

1. The graph $L_{1}: c=\operatorname{split}(a, b)$; add a pendant vertex z to c.
2. The graph $L_{2}: c:=\operatorname{split}(a, b) ; x=\operatorname{split}(a, c) ; y:=\operatorname{split}(b, c)$.
3. The graph L_{3} : For $i=1-5$ do:

$$
c_{i}=\operatorname{split}(a, b) ; x_{i}=\operatorname{split}\left(a, c_{i}\right) ; y_{i}=\operatorname{split}\left(b, c_{i}\right)
$$

4. The graph L_{4} : The graph L_{4} is obtained from L_{3} by splitting the edge $\left(x_{i}, c_{i}\right)$ to obtain z_{i} for $1 \leqslant i \leqslant 5$.

First we collect some lemmas regarding the rectangle representations of the above graphs. The first two lemmas are trivial and we leave the proofs to the reader.

Lemma 1. Let θ be a rectangle representation of L_{1}. Then $\theta(c) \nsubseteq \theta(a) \cup \theta(b)$.
Lemma 2. Let θ be a rectangle representation of L_{2}, Then $\theta(c) \cap(\theta(a)-\theta(b)) \neq \emptyset$ and $\theta(c) \cap(\theta(b)-\theta(a)) \neq \emptyset$.
Lemma 3. Let $\theta=\left(\Pi_{1}, \Pi_{2}\right)$ be a rectangle representation of a graph G. If $\theta(c) \cap(\theta(a)-\theta(b)) \neq \emptyset$ then at least one of the following two conditions holds. (1) $\Pi_{1}(c) \cap\left(\Pi_{1}(a)-\Pi_{1}(b)\right) \neq \emptyset,(2) \Pi_{2}(c) \cap\left(\Pi_{2}(a)-\Pi_{2}(b)\right) \neq \emptyset$.

Proof. If $\theta(c) \cap(\theta(a)-\theta(b)) \neq \emptyset$ then $\theta(c) \cap \theta(a) \nsubseteq \theta(b)$, which implies $\Pi(a) \cap \Pi(c) \nsubseteq \Pi(b)$, for some $\Pi \in\left\{\Pi_{1}, \Pi_{2}\right\}$, and the lemma follows.

Lemma 4. Let $\{a, b, c\}$ induce a triangle with representation $\theta=\left(\Pi_{1}, \Pi_{2}\right)$. If $\Pi_{i}(c) \nsubseteq \Pi_{i}(a) \cap \Pi_{i}(b)$ for $i=1,2$, then $\theta(c)$ contains a corner point of $\theta(a) \cap \theta(b)$. (If $\theta(a) \cap \theta(b)$ is a point or a line segment the corners may be taken to overlap.)

Proof. Clearly $\theta(c) \cap(\theta(a) \cap \theta(b)) \neq \emptyset$ and therefore for $i=1,2, \Pi_{i}(c) \cap \Pi_{i}(a) \cap \Pi_{i}(b) \neq \emptyset$. Combining this with the assumption $\Pi_{i}(c) \nsubseteq \Pi_{i}(a) \cap \Pi_{i}(b)$, we can infer that $\Pi_{i}(c)$ contains either the left end point or the right end point of $\Pi_{i}(a) \cap \Pi_{i}(b)$, for $i=1,2$. Thus we conclude that $\theta(c)=\Pi_{1}(c) \times \Pi_{2}(c)$ contains at least one corner point of $\theta(a) \cap \theta(b)$.

Definition 1. Let $\theta=\left(\Pi_{1}, \Pi_{2}\right)$ be a rectangle representation of G. We say that two vertices $u, v \in V(G)$ are a crossing pairwith respect to θ if and only if $\Pi_{1}(u) \subseteq \Pi_{1}(v)$ and $\Pi_{2}(v) \subseteq \Pi_{2}(u)$.

Lemma 5. Let $\theta=\left(\Pi_{1}, \Pi_{2}\right)$ be any rectangle representation of L_{3}. Then a, b cannot be a crossing pair with respect to θ.

Proof. Suppose a, b be a crossing pair. Then we have $\Pi_{1}(a) \subseteq \Pi_{1}(b)$ and $\Pi_{2}(b) \subseteq \Pi_{2}(a)$. Now observe that for each $i, 1 \leqslant i \leqslant 5, a, b, c_{i}, x_{i}, y_{i}$ induce a subgraph isomorphic to L_{2}. Hence by Lemma 2 , we have $\theta\left(c_{i}\right) \cap(\theta(a)-\theta(b)) \neq \emptyset$ and $\theta\left(c_{i}\right) \cap(\theta(b)-\theta(a)) \neq \emptyset$. From $\theta\left(c_{i}\right) \cap(\theta(a)-\theta(b)) \neq \emptyset$ we can infer (by applying Lemma 3) that at least one of the following two conditions hold:
(a) $\Pi_{1}\left(c_{i}\right) \cap\left(\Pi_{1}(a)-\Pi_{1}(b)\right) \neq \emptyset$,
(b) $\Pi_{2}\left(c_{i}\right) \cap\left(\Pi_{2}(a)-\Pi_{2}(b)\right) \neq \emptyset$.

But since $\Pi_{1}(a) \subseteq \Pi_{1}(b)$ we have $\Pi_{1}\left(c_{i}\right) \cap\left(\Pi_{1}(a)-\Pi_{1}(b)\right)=\emptyset$. Thus we infer that $\Pi_{2}\left(c_{i}\right) \cap\left(\Pi_{2}(a)-\Pi_{2}(b)\right) \neq \emptyset$. It follows that $\Pi_{2}\left(c_{i}\right) \nsubseteq \Pi_{2}(a) \cap \Pi_{2}(b)$. Similarly we can infer that $\Pi_{1}\left(c_{i}\right) \nsubseteq \Pi_{1}(a) \cap \Pi_{1}(b)$. Therefore by Lemma 4, for each $i, 1 \leqslant i \leqslant 5, \theta\left(c_{i}\right)$ contains a corner point of $\theta(a) \cap \theta(b)$. But since there are only at most 4 corner points, by pigeon hole principle there exist i, j where $1 \leqslant i, j \leqslant 5$ and $i \neq j$ such that $\theta\left(c_{i}\right)$ and $\theta\left(c_{j}\right)$ contain the same corner point, i.e. $\theta\left(c_{i}\right) \cap \theta\left(c_{j}\right) \neq \emptyset$, a contradiction since $\left(c_{i}, c_{j}\right) \notin E\left(L_{3}\right)$.

Lemma 6. Let $\theta=\left(\Pi_{1}, \Pi_{2}\right)$ be a rectangle representation of L_{4}. Then there exists $c \in\left\{c_{i}: 1 \leqslant i \leqslant 5\right\}$ such that either a, c or b, c is a crossing pair.

Proof. We claim that there exists a $c \in\left\{c_{i}: 1 \leqslant i \leqslant 5\right\}$ such that $\Pi_{1}(c) \subseteq \Pi_{1}(a) \cap \Pi_{1}(b)$ or $\Pi_{2}(c) \subseteq \Pi_{2}(a) \cap \Pi_{2}(b)$. Suppose not. Then by Lemma 4, for each $i, 1 \leqslant i \leqslant 5, \theta\left(c_{i}\right)$ contains a corner point of $\theta(a) \cap \theta(b)$. This leads to a contradiction since there are only at most four corner points for $\theta(a) \cap \theta(b)$ and since $\theta\left(c_{i}\right), 1 \leqslant i \leqslant 5$ are pairwise disjoint by the Definition of L_{4}. Therefore without loss of generality we can assume that $\Pi_{1}\left(c_{1}\right) \subseteq \Pi_{1}(a) \cap \Pi_{1}(b)$. Now $\left\{a, b, c_{1}, x_{1}, y_{1}\right\}$ induce a graph isomorphic to L_{2} in L_{4}. Therefore by Lemma 2, $\theta\left(c_{1}\right) \cap(\theta(a)-\theta(b)) \neq \emptyset$ and $\theta\left(c_{1}\right) \cap(\theta(b)-\theta(a)) \neq \emptyset$. By Lemma 3, $\theta\left(c_{1}\right) \cap(\theta(a)-\theta(b)) \neq \emptyset$ implies that at least one of the two conditions (a) $\Pi_{1}\left(c_{1}\right) \cap\left(\Pi_{1}(a)-\Pi_{1}(b)\right) \neq \emptyset(b) \Pi_{2}\left(c_{1}\right) \cap\left(\Pi_{2}(a)-\Pi_{2}(b)\right) \neq \emptyset$ holds. But since $\Pi_{1}\left(c_{1}\right) \subseteq \Pi_{1}(a) \cap \Pi_{1}(b)$, we have $\Pi_{1}\left(c_{1}\right) \cap\left(\Pi_{1}(a)-\Pi_{1}(b)\right)=\emptyset$. Thus we infer that $\Pi_{2}\left(c_{1}\right) \cap\left(\Pi_{2}(a)-\Pi_{2}(b)\right) \neq \emptyset$. Similarly from $\theta\left(c_{1}\right) \cap(\theta(b)-\theta(a)) \neq$ \emptyset we can infer that $\Pi_{2}\left(c_{1}\right) \cap\left(\Pi_{2}(b)-\Pi_{2}(a)\right) \neq \emptyset$. Using these two inequalities (namely, $\Pi_{2}\left(c_{1}\right) \cap\left(\Pi_{2}(a)-\Pi_{2}(b)\right) \neq \emptyset$ and $\left.\Pi_{2}\left(c_{1}\right) \cap\left(\Pi_{2}(b)-\Pi_{2}(a)\right) \neq \emptyset\right)$ and recalling that $\Pi_{2}(a)$ and $\Pi_{2}(b)$ are intervals, it is easy to conclude that $\Pi_{2}(a) \cap \Pi_{2}(b) \subseteq \Pi_{2}\left(c_{1}\right)$. Now observe that the graph induced by $\left\{a, b, c_{1}, z_{1}\right\}$ in L_{4} is isomorphic to L_{1}. Hence by Lemma 1, $\theta\left(c_{1}\right) \nsubseteq \theta(a) \cup \theta(b)$. Thus, recalling that $\Pi_{1}\left(c_{1}\right) \subseteq \Pi_{1}(a) \cap \Pi_{1}(b)$, we must have $\Pi_{2}\left(c_{1}\right) \nsubseteq \Pi_{2}(a) \cup \Pi_{2}(b)$. This along with $\Pi_{2}(a) \cap \Pi_{2}(b) \subseteq \Pi_{2}\left(c_{1}\right)$ allows us to infer that $\Pi_{2}(a) \subseteq \Pi_{2}\left(c_{1}\right)$ or $\Pi_{2}(b) \subseteq \Pi_{2}\left(c_{1}\right)$. It follows that either a, c_{1} is a crossing pair or b, c_{1} is a crossing pair.

Now we construct the final 2 -tree G, and prove that its boxicity equals 3 .

1. Let (a, b) be a single edge. For $i=1-5$ do: $c_{i}=\operatorname{split}(a, b)$.
2. For each c_{i} where $1 \leqslant i \leqslant 5$ do: For $j=1-5$ do: $d_{i j}=\operatorname{split}\left(a, c_{i}\right)$ and $e_{i j}=\operatorname{split}\left(b, c_{i}\right)$.
3. For all i, j where $1 \leqslant i, j \leqslant 5$ do: $p_{i j}=\operatorname{split}\left(a, d_{i j}\right) ; q_{i j}=\operatorname{split}\left(c_{i}, d_{i j}\right) ; r_{i j}=\operatorname{split}\left(b, e_{i j}\right) ; s_{i j}=\operatorname{split}\left(c_{i}, e_{i j}\right)$.

First we show that $\operatorname{box}(G)>2$. Suppose not. Then there exists a rectangle representation for G. Since $\{a, b\} \cup$ $\left\{c_{i}, d_{i 1}, e_{i 1}, q_{i 1}: 1 \leqslant i \leqslant 5\right\}$ induce a graph isomorphic to L_{4}, by Lemma 6 , there exists a $c \in\left\{c_{i}: 1 \leqslant i \leqslant 5\right\}$ such that either a, c or b, c is a crossing pair. Without loss of generality let a, c_{1} be a crossing pair. But $\left\{a, c_{1}\right\} \cup\left\{d_{1 j}, p_{1 j}, q_{1 j}\right.$: $1 \leqslant j \leqslant 5\}$, induce a graph isomorphic to L_{3}. Thus by Lemma 5, a, c_{1} cannot be a crossing pair, which is a contradiction. Thus we infer that box $(G)>2$. Since any series-parallel graph is planar we have box $(G) \leqslant 3[5]$ and the result follows.

References

[1] L.S. Chandran, N. Sivadasan, Treewidth and boxicity, submitted for publication, Available at 〈http://arxiv.org/abs/math.CO/0505544〉, 2005.
[2] J. Kratochvil, A special planar satisfiability problem and a consequence of its NP-completeness, Discrete Appl. Math. 52 (1994) $233-252$.
[3] F.S. Roberts, On the boxicity and cubicity of a graph, Recent Progresses in Combinatorics, Academic Press, New York, 1969.
[4] E.R. Scheinerman, Intersection classes and multiple intersection parameters, Ph. D. Thesis, Princeton University, Princeton, 1984.
[5] C. Thomassen, Interval representations of planar graphs, J. Combin. Theory Ser. B 40 (1986) 9-20.

[^0]: * Corresponding author.

 E-mail addresses: mau02481@ccsun50.iitd.ernet.in (A. Bohra), sunil@csa.iisc.ernet.in (L.S. Chandran), jkraju @csa.iisc.ernet.in (J.K. Raju).

