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Abstract

We show that there exist series-parallel graphs with boxicity 3.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let F = {Sx ⊆ U : x ∈ V } be a family of subsets of a universe U, where V is an index set. The intersection
graph �(F) of F has V as a vertex set, and two distinct vertices x and y are adjacent if and only if Sx ∩ Sy �= ∅.
A k-dimensional box is a Cartesian product R1 × R2 × · · · × Rk where Ri (for 1� i�k) is a closed interval of the
form [ai, bi] on the real line. For a graph G, its boxicity is the minimum dimension k, such that there exists a family
F of k-dimensional axis-parallel boxes with �(F) = G. We denote the boxicity of a graph G by box(G). The notion
of boxicity was introduced by Roberts [3] and has since been studied by many authors. The complexity of finding
the boxicity of a graph was shown to be NP-hard by Cozzens. This was later improved by Yannakakis and finally by
Kratochvil [2] who showed that deciding whether the boxicity of a graph is at most 2 itself is NP-complete.

The three well-known graph classes, planar graphs(P), series-parallel graphs (SP) and outer planar graphs(OP)
satisfy the following proper inclusion relation: OP ⊂ SP ⊂ P. It is known that box(G)�3 if G ∈ P [5] and
box(G)�2 if G ∈ OP [4]. Thus it is interesting to decide whether there exist series-parallel graphs of boxicity 3. In
this paper we construct a series-parallel graph with boxicity 3, thus resolving this question. Recently Chandran and
Sivadasan [1] showed that for any G, box(G)� treewidth(G) + 2. They conjecture that for any k, there exists a k-tree
with boxicity k + 1. (This would show that their bound is tight but for an additive factor of 1.) The conjecture is trivial
for k=1. The series-parallel graph we construct in this paper is a 2-tree with boxicity 3 and thus we verify the conjecture
for k = 2. (The reader may note that a graph is a series-parallel graph if and only if it is the subgraph of a 2-tree.)
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2. The construction

The class of undirected graphs known as 2-trees is defined recursively as follows: A 2-tree on 3 vertices is a clique
on 3 vertices. Given any 2-tree Tn on n vertices (n�3) we construct a 2-tree on n + 1 vertices by applying a split
operation on an edge (a, b) of Tn. A split operation on (a, b) is the addition of a new vertex c and two new edges (a, c)

and (b, c) to Tn. We say that vertex c is obtained by splitting (a, b). When describing our constructions, we use the
assignment statement c = split(a, b) to indicate that a split operation is performed on the edge (a, b) to obtain the new
vertex c.

I = (V , E) is an interval graph if and only if there exists a function � that maps each vertex u ∈ V to a closed
interval of the form [l(u), r(u)] on the real line such that (u, v) ∈ E(I) ⇐⇒ �(u) ∩ �(v) �= ∅. We will call �,
an interval representation of I. In a similar way, a rectangle representation of G = (V , E) is a function � that maps
each vertex v ∈ V (G) to a 2-dimensional axis parallel box R1 × R2, where Ri , for 1� i�2, is a closed interval
of the form [ai, bi] on the real line, such that (u, v) ∈ E(G) ⇐⇒ �(u) ∩ �(v) �= ∅. Let �i be the function that
maps u ∈ V (G) to Ri . Then we write � = (�1, �2). (Note that �i (u) represents the projection of the box �(u) on
the ith axis.)

Before presenting the construction of the 2-tree with boxicity 3, we present four simpler graphs which occur as
subgraphs of the final 2-tree, to facilitate the presentation of the proof. To construct each of the following graphs, we
start with a single edge (a, b) and then perform a few split operations:

1. The graph L1: c = split(a, b); add a pendant vertex z to c.
2. The graph L2: c := split(a, b); x = split(a, c); y := split(b, c).
3. The graph L3: For i = 1.5 do:

ci = split(a, b); xi = split(a, ci); yi = split(b, ci).
4. The graph L4: The graph L4 is obtained from L3 by splitting the edge (xi, ci) to obtain zi for 1� i�5.

First we collect some lemmas regarding the rectangle representations of the above graphs. The first two lemmas are
trivial and we leave the proofs to the reader.

Lemma 1. Let � be a rectangle representation of L1. Then �(c)��(a) ∪ �(b).

Lemma 2. Let � be a rectangle representation of L2, Then �(c) ∩ (�(a) − �(b)) �= ∅ and �(c) ∩ (�(b) − �(a)) �= ∅.

Lemma 3. Let � = (�1, �2) be a rectangle representation of a graph G. If �(c) ∩ (�(a) − �(b)) �= ∅ then at least one
of the following two conditions holds. (1) �1(c) ∩ (�1(a) − �1(b)) �= ∅, (2) �2(c) ∩ (�2(a) − �2(b)) �= ∅.

Proof. If �(c)∩(�(a)−�(b)) �= ∅ then �(c)∩�(a)��(b), which implies �(a)∩�(c)��(b), for some � ∈ {�1, �2},
and the lemma follows. �

Lemma 4. Let {a, b, c} induce a triangle with representation �= (�1, �2). If �i (c)��i (a)∩�i (b) for i =1, 2, then
�(c) contains a corner point of �(a) ∩ �(b). (If �(a) ∩ �(b) is a point or a line segment the corners may be taken to
overlap.)

Proof. Clearly �(c) ∩ (�(a) ∩ �(b)) �= ∅ and therefore for i = 1, 2, �i (c) ∩ �i (a) ∩ �i (b) �= ∅. Combining this with
the assumption �i (c)��i (a) ∩ �i (b), we can infer that �i (c) contains either the left end point or the right end point
of �i (a) ∩ �i (b), for i = 1, 2. Thus we conclude that �(c) = �1(c) × �2(c) contains at least one corner point of
�(a) ∩ �(b). �

Definition 1. Let �= (�1, �2) be a rectangle representation of G. We say that two vertices u, v ∈ V (G) are a crossing
pairwith respect to � if and only if �1(u) ⊆ �1(v) and �2(v) ⊆ �2(u).

Lemma 5. Let � = (�1, �2) be any rectangle representation of L3. Then a, b cannot be a crossing pair with respect
to �.
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Proof. Suppose a, b be a crossing pair. Then we have �1(a) ⊆ �1(b) and �2(b) ⊆ �2(a). Now observe that for each
i, 1� i�5, a, b, ci, xi, yi induce a subgraph isomorphic to L2. Hence by Lemma 2, we have �(ci)∩ (�(a)− �(b)) �= ∅
and �(ci) ∩ (�(b) − �(a)) �= ∅. From �(ci) ∩ (�(a) − �(b)) �= ∅ we can infer (by applying Lemma 3) that at least one
of the following two conditions hold:

(a) �1(ci) ∩ (�1(a) − �1(b)) �= ∅,
(b) �2(ci) ∩ (�2(a) − �2(b)) �= ∅.

But since �1(a) ⊆ �1(b) we have �1(ci)∩(�1(a)−�1(b))=∅. Thus we infer that �2(ci)∩(�2(a)−�2(b)) �= ∅.
It follows that �2(ci)��2(a) ∩ �2(b). Similarly we can infer that �1(ci)��1(a) ∩ �1(b). Therefore by Lemma 4,
for each i, 1� i�5, �(ci) contains a corner point of �(a) ∩ �(b). But since there are only at most 4 corner points, by
pigeon hole principle there exist i, j where 1� i, j �5 and i �= j such that �(ci) and �(cj ) contain the same corner
point, i.e. �(ci) ∩ �(cj ) �= ∅, a contradiction since (ci, cj ) /∈ E(L3). �

Lemma 6. Let � = (�1, �2) be a rectangle representation of L4. Then there exists c ∈ {ci : 1� i�5} such that either
a, c or b, c is a crossing pair.

Proof. We claim that there exists a c ∈ {ci : 1� i�5} such that �1(c) ⊆ �1(a) ∩ �1(b) or �2(c) ⊆ �2(a) ∩ �2(b).
Suppose not. Then by Lemma 4, for each i, 1� i�5, �(ci) contains a corner point of �(a) ∩ �(b). This leads to a
contradiction since there are only at most four corner points for �(a) ∩ �(b) and since �(ci), 1� i�5 are pairwise
disjoint by the Definition of L4. Therefore without loss of generality we can assume that �1(c1) ⊆ �1(a) ∩ �1(b).
Now {a, b, c1, x1, y1} induce a graph isomorphic to L2 in L4. Therefore by Lemma 2, �(c1) ∩ (�(a) − �(b)) �= ∅ and
�(c1) ∩ (�(b) − �(a)) �= ∅. By Lemma 3, �(c1) ∩ (�(a) − �(b)) �= ∅ implies that at least one of the two conditions (a)
�1(c1)∩(�1(a)−�1(b)) �= ∅ (b) �2(c1)∩(�2(a)−�2(b)) �= ∅ holds. But since �1(c1) ⊆ �1(a)∩�1(b), we have
�1(c1)∩(�1(a)−�1(b))=∅. Thus we infer that �2(c1)∩(�2(a)−�2(b)) �= ∅. Similarly from �(c1)∩(�(b)−�(a)) �=
∅ we can infer that �2(c1)∩(�2(b)−�2(a)) �= ∅. Using these two inequalities (namely, �2(c1)∩(�2(a)−�2(b)) �= ∅
and �2(c1) ∩ (�2(b) − �2(a)) �= ∅) and recalling that �2(a) and �2(b) are intervals, it is easy to conclude that
�2(a) ∩ �2(b) ⊆ �2(c1). Now observe that the graph induced by {a, b, c1, z1} in L4 is isomorphic to L1. Hence by
Lemma 1, �(c1)��(a) ∪ �(b). Thus, recalling that �1(c1) ⊆ �1(a) ∩ �1(b), we must have �2(c1)��2(a) ∪ �2(b).
This along with �2(a) ∩ �2(b) ⊆ �2(c1) allows us to infer that �2(a) ⊆ �2(c1) or �2(b) ⊆ �2(c1). It follows that
either a, c1 is a crossing pair or b, c1 is a crossing pair. �

Now we construct the final 2-tree G, and prove that its boxicity equals 3.

1. Let (a, b) be a single edge. For i = 1.5 do: ci = split(a, b).
2. For each ci where 1� i�5 do: For j = 1.5 do: dij = split(a, ci) and eij = split(b, ci).
3. For all i, j where 1� i, j �5 do: pij = split(a, dij ); qij = split(ci, dij ); rij = split(b, eij ); sij = split(ci, eij ).

First we show that box(G) > 2. Suppose not. Then there exists a rectangle representation for G. Since {a, b} ∪
{ci, di1, ei1, qi1 : 1� i�5} induce a graph isomorphic to L4, by Lemma 6, there exists a c ∈ {ci : 1� i�5} such that
either a, c or b, c is a crossing pair. Without loss of generality let a, c1 be a crossing pair. But {a, c1} ∪ {d1j , p1j , q1j :
1�j �5}, induce a graph isomorphic to L3. Thus by Lemma 5, a, c1 cannot be a crossing pair, which is a contradiction.
Thus we infer that box(G) > 2. Since any series-parallel graph is planar we have box(G)�3 [5] and the result follows.
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